

2 CROSSTALK The Journal of Defense Software Engineering June 2006

Social and Technical Reasons for Software Project
Failures
Applying a careful program of risk analysis and risk abatement can
lower the effects of the technical and social issues that handicap
projects and lower the probability of major software disasters.
by Capers Jones

What We’ve Got Here Is … Failure to Communicate
The failure to communicate is the root problem of more program
failures than we allow ourselves to believe. This article uses the famous
line from the movie Cool Hand Luke, “What we’ve got here is ... failure to
communicate,” to illustrate communication failures and successes.
by Alan C. Jost

Knowledge: The Core Problem of Project Failure
This author contends that knowledge is the most common cause of
project failures: either project managers do not have enough of it, or
they are not using the knowledge they do have correctly.
by Timothy K. Perkins

Start With “Simple” Earned Value on All Your Projects
The authors show that by only implementing 10 of the 32 American
National Standards Institute/Electronic Industries Alliance’s criteria to
all projects, Earned Value Management can be achieved.
by Quentin W. Fleming and Joel M. Koppelman

Statistical Methods Applied to EVM:The Next Frontier
Earned Value Management (EVM) has brought science to management
projects, and this article describes the elements necessary for performing
statistical analysis in association with EVM.
by Walt Lipke

Defining Short and Usable Processes
This article describes common problems with process documentation,
discusses best practices for defining short and usable processes and
procedures, describes success stories in real organizations, and provides
some lessons learned.
by Timothy G. Olson

Should Your Projects’ Leaders Be on Springer?
This article draws parallels between the outrageous events on the Jerry
Springer Show and problems faced by process improvement programs.
by Paul Kimmerly

4

10

13

16

20

24

29

Cover Design by
Kent Bingham

3

9

28

31

DeparDepar tmentstments

ON THE COVER

From the Sponsor

Coming Events
Call for Articles

Web Sites

BackTalk

WhWhyy PrProjectsojects FFailail
CrossTalk

76 SMXG
CO-SPONSOR

309 SMXG
CO-SPONSOR

402 SMXG
CO-SPONSOR

DHS
CO-SPONSOR

NAVAIR
CO-SPONSOR

PUBLISHER

ASSOCIATE PUBLISHER

MANAGING EDITOR

ASSOCIATE EDITOR

ARTICLE COORDINATOR

PHONE

E-MAIL

CROSSTALK ONLINE

Kevin Stamey

Randy Hill

Diane Suchan

Joe Jarzombek

Jeff Schwalb

Brent Baxter

Elizabeth Starrett

Kase Johnstun

Chelene Fortier-Lozancich

Nicole Kentta

(801) 775-5555

crosstalk.staff@hill.af.mil

www.stsc.hill.af.mil/
crosstalk

CrossTalk,The Journal of Defense Software
Engineering is co-sponsored by the U.S. Air Force
(USAF), the U.S. Department of Homeland Security
(DHS), and the U.S. Navy (USN). USAF co-sponsors:
Oklahoma City-Air Logistics Center (ALC) 76
Software Maintenance Group (SMXG), Ogden-ALC
309 SMXG, and Warner Robins-ALC 402 SMXG.
DHS co-sponsor: National Cyber Security Division of
the Office of Infrastructure Protection. USN co-spon-
sor: Naval Air Systems Command.

The USAF Software Technology Support
Center (STSC) is the publisher of CrossTalk,
providing both editorial oversight and technical review
of the journal.CrossTalk’s mission is to encourage
the engineering development of software to improve
the reliability, sustainability, and responsiveness of our
warfighting capability.

Subscriptions: Send correspondence concerning
subscriptions and changes of address to the following
address.You may e-mail us or use the form on p. 15.

517 SMXS/MDEA
6022 Fir AVE
BLDG 1238
Hill AFB, UT 84056-5820

Article Submissions:We welcome articles of interest
to the defense software community.Articles must be
approved by the CROSSTALK editorial board prior to
publication. Please follow the Author Guidelines, avail-
able at <www.stsc.hill.af.mil/crosstalk/xtlkguid.pdf>.
CROSSTALK does not pay for submissions. Articles
published in CROSSTALK remain the property of the
authors and may be submitted to other publications.

Reprints: Permission to reprint or post articles must
be requested from the author or the copyright hold-
er and coordinated with CROSSTALK.

Trademarks and Endorsements:This Department of
Defense (DoD) journal is an authorized publication
for members of the DoD. Contents of CROSSTALK
are not necessarily the official views of, or endorsed
by, the U.S. government, the DoD, or the STSC. All
product names referenced in this issue are trademarks
of their companies.

Coming Events: Please submit conferences, seminars,
symposiums, etc. that are of interest to our readers at
least 90 days before registration. Mail or e-mail
announcements to us.

CrossTalk Online Services: See <www.stsc.hill.af.mil/
crosstalk>, call (801) 777-0857 or e-mail <stsc.web
master@hill.af.mil>.

Back Issues Available: Please phone or e-mail us to
see if back issues are available free of charge.

Additional art services
provided by Janna Jensen
jensendesigns@aol.com

Open Open FForumorum

SoftwarSoftwaree EngineeringEngineering TTechnoloechnologgyy

June 2006 www.stsc.hill.af.mil 3

From the Sponsor

Don’t we all wish that there were a simple answer to this question? Despite the many
opinions, nobody has a straightforward answer that really applies to all projects.

The articles in this issue, and many other articles that I reviewed, point to two facts: First,
everyone has a theory on why programs fail, and second, there is no singular cause that
universally applies. It is, frankly, surprising that the variety of statistics and articles on
project failures have little in common. There were, however, a few – just a few – com-
mon denominators to project failures. But since I am a glass-is-half-full kind of guy, I

would rather view this topic from the side of success. Although I suspect there are more, I only
found three common denominators that were consistently mentioned in several articles that I read
as key to a project’s success, requirements management being the first common denominator.
Success was not just defined by well-documented technical requirements, but well-defined pro-
grammatic requirements/thresholds. Most articles specifically note requirements creep as a chal-
lenge for projects. The driving forces behind requirements creep exist in many forms, and every
project should have a systems engineering strategy to manage requirements, which is a good lead
to the second common denominator: risk management. Successful programs not only identified
risk early on, but specific steps were defined for managing the risk once identified. The third com-
mon denominator consistently mentioned was project planning. Without incredible luck, no pro-
ject can be successful without realistic and thorough up-front planning. To state the obvious, the
better the planning, the more likely the outcome will match the plan.

Like most of you, I have my opinions on how to have a successful project. I would like to
point you to what I view are some other critical elements of project success. Having served as
both an acquirer and supplier of software, I can tell you that a key to success is sound systems
engineering. Few projects can be truly successful if they do not take into account the many ten-
tacles that are linked to a project. Suppliers and acquirers must work together to implement good
systems engineering. Another element critical to a project’s success is careful consideration in the
planning phase to the availability of resources. The availability of key people, equipment, facili-
ties, and many other project resources must be taken into account before committing to a sched-
ule. One final element that the 76th Software Maintenance Group (SMXG) has found to be key
to a project’s success is project management. Managers must adequately manage day-to-day activ-
ities, ensure processes are followed, monitor progress, and communicate with the customer.

While I do not mean to imply that these three elements are the only elements of successful
projects, I do believe they are among the most critical elements of success. Our track record here
at the 76th SMXG is evidence that these elements have certainly contributed to our success. Our
325 software deliveries in the last 24 months have resulted in 100 percent on-time delivery per-
formance. I hope you will take some of these lessons learned as well as the insights from this
month’s authors and apply them to your project.

We start this month with an article from Capers Jones on the social and technical reasons for
project failure, followed by an entertaining article by Alan C. Jost on the importance of commu-
nication. Timothy K. Perkins discusses the conclusions of his independent research and how lack
of knowledge or the application of that knowledge can lead to project failure. Quentin W. Fleming
and Joel M. Koppelman suggest using a simplified version of earned value as a tool for project
success. Our recently retired Walt Lipke continues to aid us with his article on statistical methods
applied to Earned Value Management. Timothy G. Olson defines short and usable (emphasis
added) processes. We conclude with Paul Kimmerly, who provides unique insight on how process
improvement projects can actually help a project fail rather than help them succeed.

I trust these articles will help in alerting you to warning signs of potential weaknesses that can
lead to project failure. I also hope they help you and your team implement successful processes
for project success.

Why Do Projects Fail?

Kevin Stamey
Oklahoma City Air Logistics Center, Co-Sponsor

Software is an important but trou-
bling technology. Software applica-

tions are the driving force of modern
business operations, but software is
also viewed by many chief executives
as one of the major problem areas
faced by large corporations [1, 2, 3, 4].

The litany of senior executive com-
plaints against software organizations
is lengthy, but can be condensed down
to a set of three very critical issues that
occur over and over in hundreds of
corporations:
1. Software projects are not estimated or

planned with acceptable accuracy.
2. Software project status reporting is

often wrong and misleading.
3. Software quality and reliability are

often unacceptably poor.
When software project managers

(PMs) themselves are interviewed, they
concur that the three major complaints
levied against software projects are real
and serious. However, from the point of
view of software managers, corporate
executives also contribute to software
problems [5, 6]. The following are three
complaints against top executives:
1. Executives often reject accurate

and conservative estimates.
2. Executives apply harmful schedule

pressure that damages quality.
3. Executives add major new require-

ments in mid-development.
Corporate executives and software

managers have somewhat divergent
views as to why software problems are
so prevalent. Both corporate execu-
tives and software managers see the
same issues, but these issues look quite
different to each group. Let us exam-
ine the root causes of the five software
risk factors:
1. Root causes of inaccurate estimat-

ing and schedule planning.
2. Root causes of incorrect and opti-

mistic status reporting.
3. Root causes of unrealistic schedule

pressures.
4. Root causes of new and changing

requirements during development.
5. Root causes of inadequate quality

control.

These five risk areas are all so critical
that they must be controlled if large
projects are likely to have a good
chance of a successful outcome.

Root Causes of Inaccurate
Estimating and Schedule
Planning
Since both corporate executives and
software managers find estimating to
be an area of high risk, what are the
factors triggering software cost esti-
mating problems? From analysis and
discussions of estimating issues with
several hundred managers and execu-
tives in more than 75 companies

between 1995 and 2006, the following
were found to be the major root caus-
es of cost estimating problems:
1. Formal estimates are demanded

before requirements are fully
defined.

2. Historical data is seldom available
for calibration of estimates.

3. New requirements are added, but
the original estimate cannot be
changed.

4. Modern estimating tools are not
always utilized on major software
projects.

5. Conservative estimates may be
overruled and replaced by aggres-
sive estimates.
The first of these estimating issues –

formal estimates are demanded before require-
ments are fully defined – is an endemic
problem which has troubled the soft-
ware community for more than 50 years
[7, 8]. The problem of early estimation
does not have a perfect solution as of
2006, but there are some approaches
that can reduce the risks to acceptable
levels.

Several commercial software cost
estimation tools have early estimation
modes which can assist managers in
sizing a project prior to full require-
ments, and then in estimating develop-
ment staffing needs, resources, sched-
ules, costs, risk factors, and quality [9].
For very early estimates, risk analysis is
a key task.

These early estimates have confi-
dence levels that initially will not be
very high. As information becomes
available and requirements are defined,
the estimates will improve in accuracy,
and the confidence levels will also
improve. But make no mistake, soft-
ware cost estimates performed prior to
the full understanding of requirements

4 CROSSTALK The Journal of Defense Software Engineering June 2006

Social and Technical Reasons for Software Project Failures©

Capers Jones
Software Productivity Research, LLC

Major software projects have been troubling business activities for more than 50 years. Of any known business activity, soft-
ware projects have the highest probability of being cancelled or delayed. Once delivered, these projects display excessive error
quantities and low levels of reliability. Both technical and social issues are associated with software project failures. Among
the social issues that contribute to project failures are the rejections of accurate estimates and the forcing of projects to adhere
to schedules that are essentially impossible. Among the technical issues that contribute to project failures are the lack of mod-
ern estimating approaches and the failure to plan for requirements growth during development. However, it is not a law of
nature that software projects will run late, be cancelled, or be unreliable after deployment. A careful program of risk analysis
and risk abatement can lower the probability of a major software disaster.

Why Projects Fail

© 2005-2006 by Capers Jones. All Rights Reserved.

“One advantage
that function

points bring to early
estimation is that they

are derived directly from
the requirements and

show the current status
of requirements
completeness.”

Social and Technical Reasons for Software Project Failures

June 2006 www.stsc.hill.af.mil 5

are intrinsically difficult. This is why
early estimates should include contin-
gencies for requirements changes and
other downstream cost items.

The second estimating issue – his-
torical data is seldom available for calibra-
tion of estimates – is strongly related to
the first issue. Companies that lack his-
torical information on staffs, sched-
ules, resources, costs, and quality levels
from similar projects are always at risk
when it comes to software cost estima-
tion. A good software measurement
program pays handsome dividends
over time [10].

For those organizations that lack
internal historical data, it is possible to
acquire external benchmark informa-
tion from a number of consulting
organizations. However, the volume of
external benchmark data varies among
industries, as do the supply sources.

One advantage that function points
bring to early estimation is that they
are derived directly from the require-
ments and show the current status of
requirement completeness [11]. As
new features are added, the function
point total will go up accordingly.
Indeed, even if features are removed
or shifted to a subsequent release, the
function point metric can handle this
situation well [12, 13].

The third estimating issue – new
requirements are added but the original esti-
mate cannot be changed – is that of new
and changing requirements without
the option to change the original esti-
mate. It is now known that the rate at
which software requirements change
runs between 1 percent and 3 percent
per calendar month during the design
and coding stages. Thus, for a project
of 1,000 function points and an aver-
age 2 percent per month creep during
design and coding, new features sur-
facing during design and coding will
add about 12 percent to the final size
of the application. This kind of infor-
mation can and should be used to
refine software cost estimates by
including contingency costs for antici-
pated requirements creep [14].

When requirements change, it is
possible for some projects in some
companies to revise the estimate to
match the new set of requirements.
This is as it should be. However, many
projects are forced to attempt to
accommodate new requirements with-
out any added time or additional funds.
I have been an expert witness in sever-
al lawsuits where software vendors
were directed by the clients to keep to

contractual schedules and costs even
though the clients added many new
requirements in mid-development.

The rate of requirements creep will
be reduced if technologies such as
joint application design (JAD), proto-
typing, and requirements inspections
are utilized. Here too, commercial esti-
mating tools can adjust their estimates
in response to the technologies that
are planned for the project.

The fourth estimating problem –
modern estimating tools are not always utilized
on major software projects – is the failure to
use state-of-the-art software cost esti-
mating methods. It is inappropriate to
use rough manual rules of thumb for
important projects. If the costs are
likely to top $500,000 and the sched-
ules take more than 12 calendar
months, then formal estimates are
much safer.

Some of the commercial software cost
estimating tools used in 2006 include:
COCOMO II, Construx Estimate,
COSTAR, CostXpert, KNOWLEDGE-
PLAN, PRICE-S, SEER, SLIM, and
SOFTCOST.

For large software projects in
excess of 1,000 function points, any of
these commercial software cost esti-
mating tools can usually excel manual
estimates in terms of accuracy, com-
pleteness, and the ability to deal with
tricky situations such as staffing
buildups and growth rate in require-
ments.

Estimating tools have one other
major advantage: when new features

are added or requirements change,
redoing an estimate to accommodate
the new data usually only takes a few
minutes. In addition, these tools will
track the history of changes made dur-
ing development and, hence, provide a
useful audit trail.

The fifth and last of the major esti-
mating issues – conservative estimates may
be overruled and replaced by aggressive esti-
mates – is the rejection of conservative
or accurate cost estimates and devel-
opment schedules by clients or top
executives. The conservative estimates
are replaced by more aggressive esti-
mates that are based on business needs
rather than on the capabilities of the
team to deliver. For some government
projects, schedules may be mandated
by Congress or by some outside
authority. There is no easy solution for
such cases.

The best solution for preventing
the arbitrary replacement of accurate
estimates is evaluating historical data
from similar projects. While estimates
themselves might be challenged, it is
much less likely that historical data will
be overruled.

It is interesting that high-tech
industries are usually somewhat more
sophisticated in the use of estimating
and planning tools than financial ser-
vices organizations, insurance compa-
nies, and general manufacturing and
service groups. The high-tech indus-
tries such as defense contractors, com-
puter manufacturers, and telecommu-
nication manufacturers need accurate
cost estimates for their hardware prod-
ucts, so they usually have estimating
departments that are fully equipped
with estimating tools that also use for-
mal estimating methods [15].

Banks, insurance companies, and
low-technology service companies do not
have a long history of needing accu-
rate cost estimates for hardware prod-
ucts so they have a tendency to esti-
mate using informal methods and also
have a shortage of estimating tools
available for software PMs.

Root Causes of Incorrect
and Optimistic Status
Reporting
One of the most common sources of
friction between corporate executives
and software managers is the social
issue that software project status
reports are not accurate or believable.
In case after case, monthly status
reports are optimistic that all is on

“Several commercial
software cost estimation

tools have early
estimation modes that
can assist managers in
sizing the projects prior
to full requirements, and

then in estimating
development staffing

needs, resources,
schedules, costs, quality,

and risk factors.”

Why Projects Fail

6 CROSSTALK The Journal of Defense Software Engineering June 2006

schedule and under control until
shortly before the planned delivery
when it is suddenly revealed that
everything was not under control and
another six months may be needed.

What has long been troubling
about software project status reporting
is the fact that this key activity is
severely underreported in software
management literature. It is also
undersupported in terms of available
tools and methods.

The situation of ambiguous and
inadequate status reporting was com-
mon even in the days of the waterfall
model of software development.
Inaccurate reporting is even more
common in the modern era where the
spiral model and other alternatives such
as agile methods and the object-oriented
paradigm are supplanting traditional
methods. The reason is that these non-
linear software development methods
do not have the same precision in
completing milestones as did the older
linear software methodologies.

The root cause of inaccurate status
reporting is that PMs are simply not
trained to carry out this important
activity. Surprisingly, neither universi-
ties nor many in-house management
training programs deal with status
reporting.

If a project is truly under control
and on schedule, then the status
reporting exercise will not be particu-
larly time consuming. Perhaps it will
take five to 20 minutes of work on the
part of each component or depart-
ment manager, and perhaps an hour to
consolidate all the reports.

But if a project is drifting out of

control, then the status reports will
feature red flag or warning sections that
include the nature of the problem and
the plan to bring the project back
under control. Here, more time will be
needed, but this is time very well
spent. The basic rule of software sta-
tus reporting can be summarized in
one phrase: No surprises!

The monthly status reports should
consist of both quantitative data on
topics such as current size and num-
bers of defects and also qualitative
data on topics such as problems
encountered. Seven general kinds of
information are reported in monthly
status reports:
1. Cost variances (quantitative).
2. Schedule variances (quantitative).
3. Size variances (quantitative).
4. Defect removal variances (quantita-

tive).
5. Defect variances (quantitative).
6. Milestone completions (quantita-

tive and qualitative).
7. Problems encountered (quantita-

tive and qualitative).
Six of these seven reporting elements
are largely quantitative, although there
may also be explanations for why the
variances occur and their significance.

The most common reason for
schedule slippage, cost overrun, and
outright cancellation of a major sys-
tem is that they contain too many bugs
or defects to operate successfully.
Therefore, a vital element of monthly
status reporting is recording data on
the actual number of bugs found com-
pared to the anticipated number of
bugs. Needless to say, this implies the
existence of formal defect and quality

estimation tools and methods.
Not every software project needs

the rigor of formal monthly status
reporting. The following kinds of soft-
ware need monthly status reports:
• Projects whose total development

costs are significant (>$1,000,000).
• Projects whose total development

schedule will exceed 12 calendar
months.

• Projects with significant strategic
value to the enterprise.

• Projects where the risk of slippage
may be hazardous (such as defense
projects).

• Projects with significant interest
for top corporate management.

• Projects created under contract
with penalties for non-perfor-
mance.

• Projects whose delivery date has
been published or is important to
the enterprise.
The time and effort devoted to

careful status reporting is one of the
best software investments a company
can make. This should not be a sur-
prise: status reports have long been
used for monitoring and controlling
the construction of other kinds of
complex engineering projects.

During the past 20 years, a number
of organizations and development
approaches have included improved
status reporting as a basic skill for
PMs. Some of these include the
Project Management Institute, the
Software Engineering Institute’s (SEI)
Capability Maturity Model® (CMM®),
the reports associated with the Six
Sigma quality methodology, and the
kinds of data reported when utilizing
International Organization for
Standardization (ISO) Standards.

Unfortunately, from examining the
status reports of a number of projects
that ended up in court for breach of con-
tract, inaccurate status reporting still
remains a major contributing factor to
cost overruns, schedule overruns, and
also to litigation if the project is being
performed under contract.

Root Causes of Unrealistic
Schedule Pressures
Unrealistic schedule pressure by exec-
utives or clients is a common software
risk factor. There are four root causes
for unrealistic schedule pressure:
1. Large software projects usually

Planned Versus Actual Software Schedules

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

1FP 10FP 100FP 1000FP 10000FP 100000FP

Size in Function Points (FP)

S
c

h
e

d
u

le
in

C
a

le
n

d
a

r
M

o
n

th
s

Planned

Actual

Figure1: Planned VersusActual Schedules for Software Projects

Figure 1: Planned Versus Actual Schedules for Software Projects

® Capability Maturity Model and CMM are registered in the
U.S. Patent and Trademark Office by Carnegie Mellon
University.

Social and Technical Reasons for Software Project Failures

June 2006 www.stsc.hill.af.mil 7

have long schedules of more than
36 months.

2. PMs are not able to successfully
defend conservative estimates.

3. Historical data from similar pro-
jects is not available.

4. Some kind of external business
deadline affects the schedule.
Figure 1 shows U.S. industry expe-

riences derived from several thousand
software projects. The upper curve
shows the average delivery time in cal-
endar months, while the lower curve
shows the planned or desired delivery
time. The larger the project, the
greater the gap between the actual
delivery date and the planned delivery
date of the application [16].

Executives may be arbitrary in their
decisions, but they are seldom stupid.
While corporate executives might
want a large software project finished
in 24 months, they will almost certain-
ly accept a 36-month schedule as a
fact of life (if they know that not one
of 50 similar projects within their
industry has ever been completed in
less than 36 months). Estimates might
be overruled, but accurate historical
data will probably keep schedule pres-
sure from becoming unrealistic.

The most difficult problem to solve
is when some kind of external business
deadline affects the project schedule.
Unfortunately, these business deadlines
are usually outside the control of either
PMs or technical personnel. Examples
of external business deadlines include
contractual obligations, the starting
dates of new laws that require software
support, or some kind of technical sit-
uation such as those associated with
the Y2K problem.

Such external fixed dates cannot be
changed, or at least not changed by
project personnel. Therefore a combi-
nation of cutting back on functions,
plus staff overtime, remains the most
common method for dealing with
fixed and unchanging delivery dates. If
the mandated schedule is quite impos-
sible to achieve, then a more drastic
option would be project cancellation.

Root Causes of New and
Changing Requirements
During Development
The root causes of requirements
changes are dynamic businesses. Real-
world requirements for software must
change in response to new business
needs. However, average change rates
of 2 percent per calendar month indi-

cate that the methods used for gather-
ing and analyzing the initial require-
ments are inadequate and should be
improved.

By counting function points from
the original requirements and then
counting again at the time of delivery,
it has been found that the average rate
of requirements growth is about 2 per-
cent per calendar month from the
nominal completion of the require-
ments phase through the design and
coding phases.

The total accumulated volume of
new or changing requirements can top
50 percent of the initial requirements
when function point totals at the
requirements phase are compared to

function point totals at deployment.
The state-of-the-art requirements
change control includes the following:
• A joint client/development change

control board.
• Use of JAD to minimize down-

stream changes.
• Use of formal prototypes to mini-

mize downstream changes.
• Formal review of all change

requests.
• Revised cost and schedule esti-

mates for all changes under 50
function points.

• Prioritization of change requests in
terms of business impact.

• Formal assignment of change
requests to specific releases.

• Use of automated change control
tools with cross-reference capabili-
ties.
One of the observed byproducts of

the usage of formal JAD sessions is a
reduction in downstream requirements
changes. Rather than having unplanned
requirements surface at a rate of 1 per-

cent to 3 percent every month, studies
of JAD by IBM and other companies
have indicated that unplanned require-
ments changes often drop below 1
percent per month due to the effec-
tiveness of the JAD technique.

Prototypes are also helpful in
reducing the rates of downstream
requirements changes. Normally, key
screens, inputs, and outputs are proto-
typed so users have some hands-on
experience with an example of the
completed application.

However, changes will always
occur for large systems. It is not pos-
sible to freeze the requirements of any
real-world application.Therefore, lead-
ing companies are ready and able to
deal with changes and do not let them
become impediments to progress;
some form of iterative development is
a logical necessity.

Root Causes of Inadequate
Quality Control
Effective software quality control is
the most important single factor that
separates successful projects from
delays and disasters. The reason for
this success is that finding and fixing
bugs is the most expensive cost ele-
ment for large systems, and it takes
more time than any other activity.

The root cause for poor quality
control is lack of solid empirical data
on the cost effectiveness of a good
quality control program. More than 50
years of empirical studies have proven
that projects with effective quality
control cost less and have shorter
schedules than similar projects with
poor quality control. However, a dis-
tressing number of PMs are not aware
of the economics of quality control [5,
10].

Successful quality control involves
defect prevention, defect removal, and
defect measurement activities. The
phrase defect prevention includes all
activities that minimize the probability
of creating an error or defect in the
first place. Examples of defect preven-
tion activities include the use of the
Six Sigma approach, the use of JAD
for gathering requirements, the use of
formal design methods, the use of
structured coding techniques, and the
use of libraries of proven reusable
material.

The phrase defect removal includes all
activities that can find errors or
defects in any kind of deliverable.
Examples of defect removal activities

“More than 50 years
of empirical studies
have proven that

projects with effective
quality control cost

less and have shorter
schedules than similar

projects with poor
quality control.”

Why Projects Fail

8 CROSSTALK The Journal of Defense Software Engineering June 2006

include requirements inspections,
design inspections, document inspec-
tions, code inspections, and many
kinds of testing [17, 18].

The phrase defect measurement
includes measures of defects found
during development and also defects
reported by customers after release.
These two key measures allow leading
companies to calculate their defect
removal efficiency rates, or the per-
centages of defects found prior to
release of software applications.
Supplemental measures such as severi-
ty levels, code complexity, and defect
repair rates are also useful and important.
Statistical analysis of defect origins and
root-cause analysis are beneficial, along
with the key measurements of cost and
defect repairs [10].

Some activities benefit both defect
prevention and defect removal simultane-
ously. For example, participation in design
and code inspection is very effective in
terms of defect removal and also benefits
defect prevention. Defect prevention is
aided because inspection participants
learn to avoid the kinds of errors that
inspections detect.

Successful quality control activities
include defect prevention, defect removal,
and defect measurements. The combina-
tion of defect prevention and defect
removal activities leads to some very sig-
nificant differences in the overall numbers
of software defects between successful
and unsuccessful projects.

For projects in the 10,000 function
point range, the successful ones accumu-
late development totals of around 3.0
defects per function point and remove
about 96 percent of them before cus-
tomer delivery. In other words, the num-
ber of delivered defects is about 0.12
defects per function point or 1,200 total
latent defects. Of these, about 10 percent
– or 120 – would be fairly serious defects.
The rest would be minor or cosmetic
defects.

By contrast, the unsuccessful projects
accumulate development totals of around
7.0 defects per function point and remove
only about 85 percent of them before
delivery. The number of delivered defects
is about 1.05 defects per function point or
10,500 total latent defects. Of these, about
15 percent – or 1,575 – would be fairly
serious defects. This large number of seri-
ous latent defects after delivery is very
troubling for users. If a project has more
than about 7.0 defects per function point
and less than 85 percent removal efficien-
cy, it will probably be cancelled because it
can never successfully exit testing, and the

test cycle will be hopelessly protracted.
One of the reasons why successful

projects have such a high defect removal
efficiency compared to unsuccessful pro-
jects is the use of design and code inspec-
tions [17, 18]. Formal design and code
inspections average about 65 percent effi-
cient in finding defects. They also improve
testing efficiency by providing better
source material for constructing test cases.

Unsuccessful projects typically omit
design and code inspections and depend
purely on testing. The omission of up-
front inspections causes three serious
problems:
1. The large number of defects still pre-

sent when testing begins slows the
project to a standstill.

2. The bad fixes1 injection rate for projects
without inspections is alarmingly high.

3. The overall defect removal efficiency
associated with only testing is not suf-
ficient to achieve defect removal rates
higher than about 80 percent.
Fortunately, the SEI, ISO quality stan-

dards, and the Six Sigma approach have
benefited quality control activities
throughout the past 20 years. As a result,
an increasing number of large projects
have been successful compared to similar
projects done in the 1980s.

However, for very large projects above
10,000 function points in size, missed
delivery dates, cost overruns, and outright
terminations remain distressingly high
even in 2006. The industry is improving,
but much more improvement is needed.

Summary and Conclusions
Large software projects are very haz-
ardous business ventures. For projects
above 10,000 function points, cancella-
tions, delays, and cost overruns have been
the norm rather than the exception.

Careful analysis of the root causes of
large software project delays and disasters
indicate that most of the problems stem
from inaccurate estimation, inaccurate sta-
tus reporting, lack of historical data from
similar projects, and suboptimal quality
control.

All of these root causes can be mini-
mized or even eliminated by the adoption
of formal estimating methods and tools,
formal monthly status reports of both
quantitative and qualitative data, collecting
historical data, and improving quality con-
trol methods. Large software projects will
never be without risk, but if the risks can
be brought down to acceptable levels,
both clients and corporate executives will
be pleased.u

Note
1. The term bad fixes refers to secondary

defects accidentally injected by means
of a patch or defect repair that is itself
flawed. The industry average is about 7
percent, but for unsuccessful projects
the number of bad fixes can approach
20 percent; i.e. one out of every five
defect repairs introduced fresh defects
[14]. Successful projects, on the other
hand, can have bad-fix injection rates
of only 2 percent or less.

References
1. Yourdon, Ed. Death March – The

Complete Software Developer’s Guide
to Surviving “Mission Impossible”
Projects. Upper Saddle River, NJ:
Prentice Hall, 1997.

2. Glass, R.L. Software Runaways:
Lessons Learned from Massive
Software Project Failures. Prentice
Hall, 1998.

3. Johnson, James. “The Chaos Report.”
West Yarmouth, MA: The Standish
Group, 2000.

4. Ewusi-Mensah, Kweku. Software
Development Failures. Cambridge,
MA: Massachusetts Institute of
Technology Press, 2003.

5. Jones, Capers. Assessment and
Control of Software Risks. Prentice
Hall PTR, 1994.

6. Jones, Capers. Patterns of Software
System Failure and Success. Boston,
MA: International Thomson
Computer Press, 1995.

7. Boehm, Barry. Software Engineering
Economics. Englewood Cliffs, NJ:
Prentice Hall, 1981.

8. Jones, Capers. “Sizing Up Software.”
Scientific American Magazine Dec.
1998: 104-111.

9. Jones, Capers. Estimating Software

“The most common
reason for schedule

slippages, cost
overruns, and outright
cancellation of major
systems is that they

contain too many bugs
or defects to

operate successfully.”

Social and Technical Reasons for Software Project Failures

June 2006 www.stsc.hill.af.mil 9

Costs. New York, NY: McGraw Hill,
1998.

10. Kan, Stephen H. Metrics and Models
in Software Quality Engineering. 2nd
ed. Boston, MA: Addison-Wesley
Professional, 2002.

11. Jones, Capers. Applied Software
Measurement. 2nd ed. New York, NY:
McGraw Hill, 1996.

12. Garmus, D. and D. Herron. Function
Point Analysis – Measurement Prac-
tices for Successful Software Projects.
Boston, MA: Addison-Wesley Profes-
sional, 2001.

13. International Function Point Users
Group (IFPUG). IT Measurement –
Practical Advice from the Experts.
Boston, MA: Addison-Wesley, 2002.

14. Jones, Capers. Software Quality –
Analysis and Guidelines for Success.
Boston, MA: International Thomson
Computer Press, 1997.

15. Jones, Capers. Software Assessments,
Benchmarks, and Best Practices.
Boston, MA: Addison-Wesley
Professional, 2000.

16. Jones, Capers. Conflict and Litigation
Between Software Clients and Devel-
opers. Narragansett, R.I.: Software
Productivity Research LLC, 2005.

17. Radice, Ronald A. High Quality, Low
Cost Software Inspections. Andover,
MA: Paradoxicon Publishing, 2002.

18. Wiegers, Karl E. Peer Reviews in
Software – A Practical Guide.
Boston, MA: Addison Wesley
Professional, 2002.

COMING EVENTS

July 5-7
18th International Conference on

Software Engineering and Knowledge
San Francisco, CA

www.ksi.edu/seke/seke06.html

July 6-8
SEDE 2006

15th International Conference on
Software Engineering and Data

Engineering
Los Angeles, CA

www.isp.mu-luebeck.de/
sede06/index.htm

July 16-19
WMSCI 2006

The 10th World Multi-Conference on
Systemics, Cybernetics, and Informatics

Orlando, FL
www.iiisci.org/wmsci2006/website/

default.asp

July 16-19
SERP 2006

The 3rd Symposium on Risk
Management and Cyber-Informatics

Orlando, FL
www.iiisci.org/rmci2006/website/

default.asp

July 23-28
Agile 2006

Minneapolis, MN
www.agile2006.com

July 24-28
Practical Software and

Systems Measurement (PSM)
10th Annual Users’ Group Conference

Vail, CO
www.psmsc.com/Events.asp

April 16-19, 2007
2007 Systems and Software

Technology Conference

www.sstc-online.org

About the Author

Capers Jones is cur-
rently the chairman of
Capers Jones & Asso-
ciates, LLC. He is also
the founder and former
chairman of Software

Productivity Research, LLC (SPR),
where he holds the title of Chief
Scientist Emeritus. He is a well-known
author and international public speaker,
and has authored the books “Patterns of
Software Systems Failure and Success,”
“Applied Software Measurement,” “Soft-
ware Quality: Analysis and Guidelines
for Success,” “Software Cost Esti-
mation,” and “Software Assessments,
Benchmarks, and Best Practices.” Jones
and his colleagues from SPR have col-
lected historical data from more than 600
corporations and more than 30 govern-
ment organizations. This historical data is
a key resource for judging the effective-
ness of software process improvement
methods. The total volume of projects
studied now exceeds 12,000.

Software Productivity
Research, LLC
Phone: (877) 570-5459

(973) 273-5829
Fax: (781) 273-5176
E-mail: cjones@spr.com

nabling Technologies for Net-Centricity
January 2007

Submission Deadline: August 21

Agile Development
February 2007

Submission Deadline: September 18

COTS Integration
March 2007

Submission Deadline: October 16

CrossTalk, available on the
Intern We accept article submissions on all
softw p y , g th Letters to the Editor and BackTalk.

CALL FOR ARTICLES
If your experience or research has produced information that could be useful
t th CrossTalk can get the word out. We are specifically looking for

chedule for three areas of emphasis we are looking for:

10 CROSSTALK The Journal of Defense Software Engineering June 2006

What We’ve Got Here Is … Failure to Communicate

The tagline from Cool Hand Luke (1967) [1] has often been modified from its original. The Captain (Strother Martin)
tells the recalcitrant chain gang prisoner Luke (Paul Newman): “What we’ve got here is ... failure to communicate,” not
“What we have here is a failure to communicate.” We do not even quote the quote correctly. This article is a look at situa-
tions where communication among team members is a critical factor in the potential failure of a program or its success. This
is not a deep technical article, but I believe it is thought-provoking. When humans communicate in written, verbal, and non-
verbal forms, many times the receiver misses the intended meaning. The “failure to communicate” is the root cause for many
program failures more times than we would admit or appreciate.

Alan C. Jost
Raytheon Company

Throughout my career, I have experi-
enced a number of program failures

(even the term failure is relative and
subject to a wide range of meanings
depending on the individuals participat-
ing in the discussion). These program
failures can be directly related back to
the basic tenet of this article: failure to
communicate.

Everyone reading this more than
likely has had a similar experience and
could add to the following situations.
This article is not written as an indict-
ment against any one individual, organi-
zation, or program; it is written as a
lighthearted look at how things that
seem so simple can become major stum-
bling blocks because of our failure to com-
municate. But I do not want to just dwell
on the failures, so a couple of good
examples of how participants were able
to communicate are also presented.
Each of the situations is generalized by
using groups as examples.

NASA Mars Probe [2]
One of the most dramatic failures of a
project caused by failure to communi-
cate was the NASA probe project in
1999. The probe, the Mars Climate
Orbiter, was to orbit Mars to gather cli-
matic data. The Orbiter, at a cost of
about $125 million, traveled more than
400,000,000 miles to get to the planet.
Upon arrival, the Orbiter entered an
orbit 60 miles too low, and since it was
not built to withstand the Mars atmos-
phere, was destroyed. The design calcu-
lations used to place the spacecraft into
orbit were made in imperial measures in
terms of pounds force. The software team,
however, developed the burn control
software using metric measurements
and units in terms of newtons. While the
error was less than 0.000015 percent, it
was enough to be fatal to the mission.
The communication error was only
uncovered during the post-mortem of

the failed mission. This was a major fail-
ure to communicate between teams of
intelligent, experienced professionals
who did not check even the most obvi-
ous items in the design and implementa-
tion of the probe. “What we’ve got here
is … failure to communicate.”

Radar Red Time
In one situation in which I was person-
ally involved, three organizations – the
contractor, customer, and operational

user – were collaborating to build a large
radar system. The new radar was located
near the old radar it was replacing. The
old radar would not be decommissioned
until the new radar was successfully
operationally tested. In order to do this,
maintenance red time of the old radar
had to be scheduled when the new radar
would be tested; this is where the three
organizations failed to communicate.
Through many planning meetings for
red time, each group had a different
interpretation of what exactly red time
was. The meetings were productive and
provided for a detailed operational test
schedule. However, each organization
had a different interpretation of the red
time that created the resultant opera-
tional test schedule. The failure to com-
municate between the organizations was

discovered at the first operational test
event when the contractor requested
that the old radar be turned off.

The contractor assumed that red
time meant the old radar would be
turned off so they could test the new
radar without interference from radia-
tion being transmitted from the old
radar. The customer assumed that red
time meant that the old radar, while not
turned off, would be placed in a mainte-
nance state where the transmission of
radiation would be rerouted through the
wave-guides, eliminating a large portion
of the ambient radiation. The opera-
tional user’s version of red time meant
that only the transmission lines for the
radar data would be disconnected, so a
false target would not be transmitted.
Well, the reaction from the operational
user was, “Turn the radar off !? The
radar has never been turned off, and we
don’t even know how to turn it off, and
even worse, we don’t know how to turn
it back on!” “What we’ve got here is …
failure to communicate.”

At the heart of the situation was the
klystron, the large tube that generated
the radiation used to transmit the radar
signal. Once turned on, it had not been
turned off for years and there were no
procedures to turn it off and back on
again. In near real time, the three groups
had to communicate with the klystron
manufacturer to generate a procedure to
minimize the energy and redirect the
lower energy down the wave-guides.
The new procedure did work, and the
power down sequence was successfully
repeated numerous times to support the
operational testing of the new radar.
Failure to communicate the concept of red
time among the participating organiza-
tions could have lead directly to a major
schedule impact on the program. It
forced real-time communications
between the participating organizations
and manufacturer, resulting in the power

“One of the
most dramatic failures

of a project caused
by a failure to

communicate was the
NASA probe project

in 1999.”

What We’ve Got Here Is … Failure to Communicate

June 2006 www.stsc.hill.af.mil 11

down procedure. If the power down
procedure failed, it would also have
caused a major impact to the program.
The procedure worked and the major
schedule impact was avoided. What
we’ve got here is … communication!

Contract Negotiations
In another example, we have the cus-
tomer and contractor negotiating the
functionality included in the contractor’s
proposal. During the negotiations, it
was mentioned by the customer that
they only had two-thirds of the pro-
posed price in their budget. The con-
tractor was requested to reduce their bid
to match the customer’s budget and to
eliminate the functionality needed to hit
the target reduced-proposal price. The
proposal team developed the new pro-
posal with reduced functionality to meet
the customer’s budget and provided the
updated information to the negotiating
team.

Somehow, some way, the reduced
functionality was not accurately commu-
nicated to the customer. “What we’ve
got here is … failure to communicate.”

It came to light at the first customer
contractor system specification review
when the software technical lead pre-
sented the reduced functionality list.
The reaction from the customer was not
anticipated. Where were the missing
functions? The ones that were eliminat-
ed to reduce the bid were the functions
they were asking about and the wheels
started to fall off. Under the contract,
the contractor had to develop the func-
tionality directed by the customer,
whether in the specification or not, and
the contractor would have to recoup the
costs through the country’s court sys-
tem. Eventually, the program resulted in
delivery of the system with the full
functionality, which the customer
assumed they were going to get for the
reduced price that matched their budget.
The extra functionality, however,
required the contractor to fund the addi-
tional work. In the end, the court sided
with the contractor, and the customer
ended up paying for the full functionali-
ty by reimbursing the contractor for the
additional funding. While eventually
remedied, the initial failure to communicate
made the entire program a contentious
affair between customer and contractor.

Communication Systems vs.
Communications
These three situations indicate the
importance of eliminating the failure to

communicate among program team mem-
bers. It is not that we do not have ade-
quate communication systems to com-
municate with, we have an overabun-
dance of communication and collabora-
tive systems: telephones, cell phones,
walkie-talkies, blueberries, blackberries,
e-mail, v-mail, fax, eRooms, Docushare,
meeting rooms, Sametime (Lotus instant
messaging and Web conferencing), and a
multitude of other communication and
collaboration systems. This is not the
problem. The problem is the clear trans-
mission of ideas and concepts between
program team members that is at the
heart of the problem. “What we’ve got
here is … failure to communicate.”

As the reader, you probably have
examples of programs where the com-
munication among team members was
very good and the project turned out to
be a success. To see the impact of good
communication leading to successful
projects, I like to look to the television
show The Apprentice. The projects on the

show are contrived to be completed in a
short period of time to fit the presenta-
tion of the project in a one-hour time
slot. It is interesting to see that almost
100 percent of the time the team that
had good communication with their
customer-judge, focus groups, and/or
among the team members had the suc-
cessful project.

The Apprentice – Mural [3]
In one project, two teams had to devel-
op an advertising mural for a new elec-
tronic game. The murals were to be
done in Harlem. One team was led by a
project manager who came from a
neighborhood similar to Harlem and she
knew what would be a good advertising
mural. Since she knew what the customers
would like, she knew how to create the
mural to attract customers to buy the

electronic game. The other team was led
by a project manager who came from an
upper-edge society and was kind of a
geek; he immediately set out to get feed-
back from a customer focus group in
the neighborhood where the mural
would be placed. He wanted to find out
what was important to them as far as
electronic games were concerned. He
not only talked with the kids who would
use the games, but with the parents who
would ultimately purchase the games.
Well, guess which team won the project?
Which mural did a better job in selling
the product? Was it the know-it-all from
the ’hood, or was it the geek who com-
municated with the people in the neigh-
borhood focus group? It was an over-
whelming victory for the project manag-
er who communicated with his potential
customers. What we’ve got here is …
communication!

The Apprentice – Solstice [4]
A second The Apprentice project that
demonstrated the importance of com-
munication was the development of a
sales brochure to describe the new
Pontiac Solstice Roadster. One team was
led by and consisted of all men who nat-
urally knew exactly what it would take to
sell the new two-seat, convertible road-
ster. The other team was led by a
woman, who, by her own admission, was
not much into cars. The male-led team
took the approach of making the car a
macho-type of machine that would
attract good-looking women to the car’s
male driver, while the female-led team
spoke with the General Motors repre-
sentatives about how they wanted the
car to be portrayed. Well, you do not
have to be a wizard to guess who won
this project management contest. The
female-led team won because the pro-
ject manager captured what the execu-
tives communicated they wanted in the
sales brochure. Even more importantly
was that the Pontiac executives, who
were also the judges of the two
brochures, decided to use the brochure
designed by the female-led team as the
actual Solstice brochure in Pontiac
showrooms across the nation. While the
projects are somewhat contrived to sup-
port the premise behind the show, they
do demonstrate that the ability to com-
municate is critical to the success of the
project – any project involving a team of
people attempting to accomplish a task.

Apollo 13 – Recovery [5]
The original Apollo 13 problem was
caused when the number two oxygen

“It was an
overwhelming victory

for the project
manager who

communicated with
his potential customers.
What we’ve got here
is ... communication!”

Why Projects Fail

12 CROSSTALK The Journal of Defense Software Engineering June 2006

tank in the service module exploded
because of a short circuit in the oxygen
tank that occurred during a routine stir-
ring procedure. This problem was not
the result of a failure to communicate.
What I am using this dramatic mission
failure example for is to demonstrate
the success achieved with the ability of
the NASA Apollo ground team to com-
municate effectively, not only between
themselves to develop solutions, but
also to communicate those solutions to
the Apollo 13 crew. The initial explo-
sion also caused the number one oxygen
tank to fail and the fuel cells that sup-
plied the command module with elec-
tricity to have problems. In the initial 90
minutes, it was brainstormed by the
ground crew to use the Lunar Lander as
a lifeboat for the crew. However, the
Lunar Lander was designed to be used
for 45 hours only, and the return mis-
sion around the moon would take 90
hours. There was plenty of oxygen with
barely enough electrical power to make
the return journey. The foreseeable
problem was the eventual build up of
carbon dioxide in the spacecrafts. There
were enough lithium hydroxide canisters
in the command module and Lunar
Lander between them, but the com-
mand module square canisters were not
compatible with the round openings in
the Lunar Lander module control sys-
tem. The Houston mission control team
gave the brainstorming team the materi-
als available only to the Apollo 13 crew.
The brainstorming team had to come
up with the solution to the Apollo 13
square-peg-in-a-round-hole problem. Once
they came up with the solution, they had
to communicate that solution to the
crew to implement. Using plastic bags,
tape, cardboard, and the square canis-
ters themselves, the brainstorming team
came up with the solution. They were
able to communicate the solution to the
crew in time for their implementation,
and the rest is history. What we’ve got
here is … communication.

Summary
Human-to-human communication is
critical in managing programs. This is
even recognized in the Capability
Maturity Model® Integration where
stakeholder involvement, reviews with
higher levels of management, and other
process areas (specific and generic prac-
tices) are based on not failing to communi-
cate.

I hear you was one of the most popu-
lar phrases in the late ’90s. It generally
translated as one person understood

what the other person meant to say.
While the words truly mean that you
physically heard the words spoken, a
more appropriate response would have
been I understood you. I leave you with
just two famous quotes. The first is a
small, simple example of a failure to
communicate, and the second is an
excellent example of precise communi-
cation.

In the movie Apollo 13, astronaut Jim
Lovell (Tom Hanks) tells Mission
Control: “Houston, we have a prob-
lem.” The line has often been misquot-
ed as “Houston, we’ve got a problem.”
The historical quote from Apollo 13’s
Commander Jim Lovell was: “Houston,
we’ve had a problem.” The actual his-
toric exchange was the following (the
times are in mission times in hours,
minutes, and sections after launch) [5]:
• 55:55:20 – Swigert: “Okay, Houston,

we’ve had a problem here.”
• 55:55:28 – Lousma: “This is Hous-

ton. Say again please.”
• 55:55:35 – Lovell: “Houston, we’ve

had a problem. We’ve had a main B
bus undervolt.”
By now, it is readily apparent the

importance of communication. So in
conclusion, an example of precise com-
munication is appropriate. Again, a bit
contrived, but it makes the point. In the
movie The Fugitive during the scene right
after the train wreck where Dr. Richard
Kimball (Harrison Ford) escapes, U.S.
Marshal Samuel Gerard (Tommy Lee
Jones) has to take over a just-formed,
very large search team of local police
who are extremely reluctant to be led by
the Wyatt Earp-type marshal. He com-
municates precisely what he needs done.
In one short, memorable speech he
states his requirements:

Listen up, ladies and gentleman.
Our fugitive has been on the run
for 90 minutes. Average foot
speed over uneven ground, bar-
ring injury, is four miles an hour.
That gives us a radius of six
miles.

What I want out of each and
every one of you is a hard target
search of every gas station, resi-
dence, warehouse, farmhouse,
henhouse, outhouse, and dog
house in that area. Checkpoints
go up in 15 miles. Your fugitive’s
name is Dr. Richard Kimball. Go
get him!” [6]

Any questions on how clear his com-

munication was? In real estate, the most
important thing is location, location,
location. In program management it is
communication, communication, com-
munication.u

References
1. Cool Hand Luke. Dir. Stuart

Rosenberg. Perf. Paul Newman,
George Kennedy, J.D. Cannon, Lou
Antonio, and Robert Drivas. Warner
Brothers: 1967.

2. Nickson, David, and Suzy Siddons.
Project Disasters & How to Survive
Them. London and Sterling, VA:
Kogan Page, 2006.

3. “The Writing On the Wall.” The
Apprentice NBC. 24 Feb. 2005.

4. “A Lovely Drive.” The Apprentice
NBC. 14 Apr. 2005.

5. Nickson, David, and Suzy Siddons.
Project Disasters & How to Survive
Them. London and Sterling, VA:
Kogan Page, 2006.

6. The Fugitive. Dir. Andrew Davis. Perf.
Harrison Ford and Tommy Lee Jones.
Warner Brothers: 1993.

About the Author

Alan Jost (Lt. Col., U.S.
Air Force, retired) is a
senior software program
manager in the Raytheon
Northeast Software En-
gineering Center (SWEC)

where he works multiple tasks: Software
Engineering Process Group Executive
Committee for SWEC’s Capability
Maturity Model IntegrationSM Level 5
sustainment, process engineer on the
AutoTrac III Air Traffic Control Product
Line, and DD(X) ExComms Software
Cross Product Team. Jost joined
Raytheon in 1991 after 20 years in the Air
Force. He has served in a variety of line
management, process engineering, and
software task management roles in
SWEC, and served intermittently as
Software Engineering Process Group
Chair between 1993 and 2001.

Raytheon
Mail Stop 3-1-3914
1001 Boston Post RD
Marlborough, MA 01752
Phone: (508) 490-4282
Fax: (508) 490-1366
E-mail: alan_c_jost@raytheon.com

Having led and participated in
more than 10 Independent

Expert Program Reviews1 (IEPRs) for
the Software Technology Support
Center and the Tri-Service Assessment
Office, and having spent my military
career as a project/program manager,
several individuals have asked if there
is a common thread among programs
or projects that are having difficulty.
The answer is yes. Some expect the
thread to be project planning, others
risk management, and others expect
one of the other project management
themes. However, the root causes can
be reduced to two issues: either pro-
ject managers do not have the knowl-
edge they need, or they do not proper-
ly apply the knowledge they have.
Throughout the remainder of this arti-
cle, I will refer only to projects, but
will mean both programs and projects.

Some may consider these two
issues to be too simplistic. However, if
they take their pet principle from the
Capability Maturity Model Integration
(CMMI®)2, the Project Management
Institute’s Project Management Body of
Knowledge (PMBOK)3, the Tri-Service
Assessment4, Typology, etc., and then
ask why a project is having difficulty in
that particular area, it still boils down
to either a project manager lacks
knowledge of the particular principle,
or that the knowledge has not been
applied properly. The Project Failure
Cause-Effect Diagram (Figure 1 and
sidebar) shows this relationship,
admittedly through a great leap of
logic between all the causes leading to
project failure (155).

Lack of Knowledge
The first of these primary causes of
project failure – project managers do
not know what to do (115) – is the eas-
iest to correct. One solution is to pro-
vide the necessary training, remedying
the problem of managers not receiving
necessary training (100). Jack Ferguson,

Knowledge:The Core Problem of Project Failure

After having participated in more than 10 independent reviews of major acquisition projects, and having been associated with
project/program management throughout my military career, I assert that the cause of project failures is knowledge: either
managers do not have the necessary knowledge, or they do not properly apply the knowledge they have.

Timothy K. Perkins
Software Technology Support Center

June 2006 www.stsc.hill.af.mil 13

The Project Failure Cause-Effect Diagram

The Cause-Effect Diagram is read by locating the entity at the tail of an arrow, and
reading it preceded by the word If. Then read the entity at the head of the arrow, pre-
ceded by the word then. For example, the arrow between entities 100 and 115 of the
figure would be read: If 100 Project managers have not received necessary training,
then 115 Project managers do not know what to do. If there are several causes joined
by an ellipse, read the If only once, with other contributing cause statements joined by
and. For example, the arrows between entities 110 and 155 and 130 and 155 read: If
110 Project managers do not properly apply the knowledge they have and 130 Project
managers do not believe a project management principle adds value then 155 The
project fails.

155 The Project Fails

115

Project managers do

not know what to do.

130

Project managers do

not believe a project

management principle

adds value.

125

roject managers allow

onstraints imposed at

higher levels to

prevent them f

doing what th

know they sho

100

Project managers

have not received

necessary training.

105

Project managers do

not have necessary

experience.

110

Project managers

do not properly apply

the knowledge

they have.

135

Project managers

believe a project

management principle

is flawed.

140

The project manager's

primary goal is other

than project success.

145

Policies/directives

prevent project

managers from doing

what they know they

should do.

150

Statutes prevent

project managers from

doing what they know

they should do.

® CMMI is registered in the U.S. Patent and Trademark
Office by Carnegie Mellon University.

while teaching workshops for the
Software Engineering Institute, used to
use the phrase “Just too late training.”
What he meant was that too often,
training in a particular topic is provid-
ed too far in advance of need. Students
often have been heard saying, “Why do
I need to learn this stuff ? I’ll never use
it.” When training is provided just too
late, the students have already realized
the need for the training and can read-
ily see how the principles being taught
can help them be more successful in
accomplishing their projects. This does
not mean that the project is in trouble
prior to receiving training, but that
training is provided at the appropriate
time in the project life cycle. For exam-

ple, providing in-depth training on
project closeout prior to project initia-
tion has less value than providing such
training as the project enters the pro-
ject closeout phase of the life cycle,
and project members now realize the
importance of having the training.

This, however, implies that the pro-
ject has a plan for training. Many orga-
nizations that have undergone IEPRs
had neither individual training plans
nor an allocated budget to provide
necessary training, implying that senior
management had either not been
trained in the need for establishing an
organization training program or had
not applied what they had been taught.

The project manager’s lack of

Figure 1: The Project Failure Cause-Effect Diagram

Why Projects Fail

14 CROSSTALK The Journal of Defense Software Engineering June 2006

experience (105) is often regarded as a
what came first, the chicken or the egg? problem.
An individual needs experience to be a
good manager, but how can one gain
experience unless they are given the
opportunity to manage? The answer is to
allow managers to develop experience by
learning to manage small projects before
being given responsibility for large pro-
jects. However, this is not always the case.
Some project managers have been put in
charge of acquisition category one (ACAT
1) projects after having received only the
14-week Defense Systems Management
College program management course,
having no prior experience in system
acquisition.

Improper Application of
Knowledge
Project managers not properly applying the
knowledge they have (110) – the second
root cause of project failure – is more dif-
ficult to remedy. There are five associated
causes and effects for this cause shown in
Figure 1. If the issue is one of overlooking
the implementation of a project manage-
ment principle (120), i.e., just a lapse of
memory in what needed to be done, then
gentle reminders from subordinates, peers,
or supervisors can be a catalyst to correct
the omission. Program offices can provide
mentoring to project managers to deal with
such oversight. This mentoring can be
used to provide refresher training to those
who either have forgotten what to do or
may not be familiar with current policy,
directives, procedures, etc.

Stories abound of projects tasked to
accomplish the impossible based on
imposed constraints (e.g., cost, resources,
performance, etc.) (125). For example, the
project manager may determine that a pro-
ject will take 36 months to complete, but
downward direction is to provide rubber on
the ramp in 30 months. The only way to
accomplish this is to take shortcuts, elimi-
nating such things as peer reviews, close
configuration management, risk manage-
ment, etc. Unfortunately, taking shortcuts
usually results in lengthening a project
because of rework. What would have
taken 36 months in a well-planned project
now takes 48 months. The only real cure
that I know of for this issue is personal
integrity: the willingness to tell higher
management that their tasking is impossi-
ble, and then helping senior management
realize that based on current technology,
policy, directives, procedures, budget avail-
ability, etc., that a project cannot be com-
pleted as directed. Note that having a
repository of measurements from previ-

ous projects or using available industry
data can help sway senior management in
setting reasonable expectations.

Some project managers consider some
mandated project management practices
to be of little value (130). For example,
some consider preparing a formal project
plan to be a waste of effort. They consid-
er a project schedule prepared by using
one of the popular project management
software packages to be adequate5. Others
may consider peer reviews of code or doc-
uments to use more resources than the
value gained. Rather than discuss their
concerns with senior management, they
choose to ignore the principle with which
they disagree. When the belief that a prac-

tice does not add value is coupled with the
decision to not implement it, project fail-
ure can occur. Project managers should
discuss their concerns with senior man-
agers and resolve them. One of the best
ways to deal with these concerns is to use
historical data from other projects to vali-
date the benefit of certain practices or to
show the consequences of not following
certain practices.

Books espousing various project man-
agement philosophies and methodologies
abound. Current policies and directives
have mandated some of the philosophies
and methodologies while ignoring others.
Some project managers may not believe
that the mandated philosophies are the

best approaches to use (135). Rather
than implement what they consider to
be flawed methods, they choose to fol-
low what they consider to be proper
principles. During management reviews,
it becomes evident that the mandated
methods are not being used, and the
project manager is directed to imple-
ment the mandated method. Resources
are now consumed in either getting on
the right track or in trying to gain
approval to not use the mandated
methodology – resources that are usual-
ly scarce. This use of scarce resources
has a negative impact on the chance of
project completion within the originally
allocated cost and schedule. One solu-
tion to this problem is to gain agreement
during the project initiation phase of the
project life cycle among all parties
regarding the project management prin-
ciples to be used for the remainder of
the project.

But what if the application of sound
project management principles to ensure
project success is not the primary goal
of the project manager (140)? While this
problem seldom occurs, a few project
managers may see their current position
as a stepping stone for advancement to
higher positions. Their goal may be to
show good short-term results at the
expense of overall project success. They
build a house of cards hoping it will stay
together and that the collapse will not
occur until after the project manager is
reassigned. This also is a personal
integrity issue. The development of per-
sonal integrity in project managers is
well beyond the scope of this article.

Though the issues of policy/direc-
tives (145) or statutes (laws) (150) pre-
venting a project manager from proper-
ly managing a project seldom occur, they
both must be recognized as potential
causes of project failure. Within the past
few years, changes in the Federal
Acquisition Regulation and the
Department of Defense (DoD) 5000
series have given managers greater lati-
tude in managing their projects, but the
pendulum can always swing back to
impose more constraints, whether they
are warranted or not.

A Word of Caution
If projects continue to have difficulty
even after applying what are considered
to be sound project management princi-
ples, maybe it is the principle that is in
error. One definition of idiocy is to con-
tinue do things the same way and to
expect different results. However, doing

“Within the past few
years, changes in the
Federal Acquisition
Regulation and the

Department of Defense
5000 series have given

managers greater
latitude in managing
their projects, but the
pendulum can always
swing back to impose

more constraints,
whether they are

warranted or not.”

Knowledge:The Core Problem of Project Failure

things the same way is an underlying
premise of process improvement, i.e.,
the process must be consistent (in statis-
tical control) before it can be improved.
If project performance is not as desired,
even after consistent application of the
project management principle, the
underlying principle should be analyzed
to determine the reason for the continu-
al shortfall. Perhaps the principle is not
as sound as some would have you
believe.

Conclusion
Think about known project failures then
do a root cause analysis in your mind. For
example, why wasn’t a project properly
planned? Why was risk management not
properly implemented? Why was the pro-
ject not properly tracked? Why were any
of the other project management princi-
ples not properly followed? I believe that
if you evaluate the potential causes, you
will reach the same conclusion that I have:
it all boils down to knowledge. Either indi-
viduals do not have the necessary knowl-
edge, or they have not properly applied
the knowledge.u

Notes
1. IEPRs were called for in Interim

Regulation, DoD 5000.2-R, January 1,
2001, paragraph 2.6.8 for ACAT I-III
Software Intensive Programs using the
words, “The acquisition strategy shall
describe the planned use of indepen-
dent expert reviews for all ACAT I
through ACAT III software-intensive
programs.” The Defense Acquisition
Guidebook, Vers. 1.0, (10/17/2004),
paragraph 11.14 still encourages the
reviews, but the wording has been
changed to read, “The program man-
ager for an Acquisition Category ID or
IC program that requires software
development to achieve the needed
capability should convene an indepen-
dent expert program review after
Milestone B and prior to the system
Critical Design Review. The program
manager, or other acquisition official
in the program chain of command up
to the component acquisition execu-
tive, should also consider independent
expert program reviews for
Acquisition Category IA, II, and III
programs. The independent expert
review team should report review find-
ings directly to the program manager.”
This guidebook is available at <http://
akss.dau.mil/dag/>.

2. The CMMI is available for free down-
load at <http://www.sei.cmu.edu/

cmmi/models/>.
3. The PMBOK guide is available for

purchase at <http://www.pmibook
store.org/PMIBookStore/product
Details.aspx?itemID=358&varID=1>.

4. The Tri-Service Assessment Office is
part of the Office of the Under Sec-
retary of Defense (Acquisition, Tech-
nology, and Logistics). The Web site is
<http://www.acq.osd.mil/tai/>, but
is currently under construction.

5. Data Item Description (DID) DI-
IPSC-81427A, Software Develop-
ment Plan, provides a good template
of the areas that should be included in
a software project plan. The Institute
of Electrical and Electronics Engi-
neers Standard 1058-1998, Standard
for Software Project Management
Plans, is another source for an example
project plan. As described in the
PMBOK guide and the cited DID, a
project plan is more than a schedule.

June 2006 www.stsc.hill.af.mil 15

About the Author

Timothy K. Perkins
currently is an indepen-
dent consultant and has
supported the Software
Technology Support
Center at Hill Air Force

Base, Utah in providing consulting ser-
vices to the U.S. Air Force, U.S. Depart-
ment of Defense, and other government
agencies. Perkins has led and participat-
ed in several Independent Expert
Program Reviews of Acquisition Cate-
gory I acquisition programs as well as
three Capability Maturity Model® Inte-
gration Acquisition Module pilot assess-
ments. He has been involved in software
process improvement for the past 17
years. Before retiring from the Air Force,
Perkins was Acquisition Professional
Development Program Level 3-certified
in Project Management and Systems
Planning, Research, Development and
Engineering, and Level 1 in Test and
Evaluation. Perkins is a Project Man-
agement Institute-certified Project Man-
agement Professional and an authorized
Theory of Constraints Thinking Process
instructor. Perkins has a Bachelor of
Science in Electrical Engineering from
Brigham Young University and a Master
of Business Administration from the
University of Phoenix

E-mail: perkinst8c@aol.com

Get Your Free Subscription

Fill out and send us this form.

309 SMXG/MXDB

6022 Fir Ave

Bldg 1238

Hill AFB, UT 84056-5820

Fax: (801) 777-8069 DSN: 777-8069

Phone: (801) 775-5555 DSN: 775-5555

Or request online at www.stsc.hill.af.mil

NAME:__

RANK/GRADE:___

POSITION/TITLE:__

ORGANIZATION:___

ADDRESS:__

__

BASE/CITY:__

STATE:___________________________ZIP:___________________________________

PHONE:(_____)___

FAX:(_____)___

E-MAIL:__

CHECK BOX(ES) TO REQUEST BACK ISSUES:
FEB2005 c RISK MANAGEMENT

MAR2005 c TEAM SOFTWARE PROCESS

APR2005 c COST ESTIMATION

MAY2005 c CAPABILITIES

JUNE2005 c REALITY COMPUTING

JULY2005 c CONFIG. MGT. AND TEST

AUG2005 c SYS: FIELDG. CAPABILITIES

SEPT2005 c TOP 5 PROJECTS

OCT2005 c SOFTWARE SECURITY

NOV2005 c DESIGN

DEC2005 c TOTAL CREATION OF SW
JAN2006 c COMMUNICATION

FEB2006 c NEW TWIST ON TECHNOLOGY

MAR2006 c PSP/TSP
APR2006 c CMMI
MAY2006 c TRANSFORMING

To Request Back Issues on Topics Not
Listed Above, Please Contact <stsc.
customerservice@hill.af.mil>.

Software Engineering Technology

16 CROSSTALK The Journal of Defense Software Engineering June 2006

In 1965, the U.S. Air Force acquisition
managers defined 35 criteria which they

felt would capture the essence of earned
value management (EVM), and also satis-
fy their need to oversee the work that was
being performed for them by private
industry. Two years later, the Department
of Defense (DoD) adopted these same
criteria as their Cost/Schedule Control
Systems Criteria (C/SCSC). These 35
standards were then consistently applied
to all cost type and incentive type con-
tracts for the next three decades.

Then in 1996, after a rewrite of the 35
C/SCSC criteria by private industry, the
DoD accepted the rewriting/rewording of
these criteria under a new title called the
Earned Value Management System
(EVMS). The total number of criteria was
reduced to 32. Gone were the incompre-
hensible terms of Budgeted Cost for
Work Schedule, Budgeted Cost for Work
Performed, and Actual Cost of Work
Performed, etc. In their place were titles
like planned value, earned value, and actu-
al costs. People (even busy executives)
could understand the concept without the
need for special training or a translator
being present.

Private industry in the form of the
National Defense Industrial Association
(NDIA) took the defined criteria concept
one step further. In June 1998, the NDIA
obtained acceptance of the EVMS in the
form of the American National Standards
Institute, termed the ANSI/EIA-748
Standard. The good news in this story is
that there has been a consistent applica-
tion of the earned value criteria concept
applied for more than 40 years. The
earned value criteria have met the test of
time.

The bad news is that these criteria
were originally written for applications to
complex major system acquisitions.
Further bad news is that the original 35
criteria – and the reworded 32 criteria –

can be overly prescriptive to most of the
projects in the world, in our opinion. They
are great for major systems, but likely too
much for most projects. Somehow a way
must be found to capture the important
fundamentals of earned value without
overly prescribing requirements, which
often discourages individuals wanting to
adopt a technique to better manage their
projects. And, as the ANSI/EIA-748
Standard becomes more commonplace,
likely taking the form of a Federal
Acquisition Requirements clause issued in
routine procurements, a way must be
found to scale back the full requirements
to meet the needs of most projects – even
small software projects.

Since 1996, the authors have been
advocating a simple form of EVM for all
projects, not just major complex systems
[1]. Their intent is not to take issue with
the full application of all 32 criteria when-
ever the project risks and complexities
warrant full application. However, we
think all projects could benefit from “A
methodology for … objectively measuring project
performance and progress [2]1.” EVM, the fun-
damental principles, should be applied to
any project, of any size, in any industry.

We have studied the formal criteria
concept and have summarized just 10 fun-
damental steps which are necessary to
implement a simple (low-end) form of
EVM on any project. Perhaps it might be
called earned value light or earned value
for the masses.

There are 10 minimum requirements
necessary to employ simple earned value.
This is a good place to start the process. It
will set the foundation for employing
EVM, which can be easily expanded to
satisfy all 32 criteria, should that be
desired sometime in the future.

Each of the following 10 fundamental
steps will also make reference to a specif-
ic EVMS (ANSI/EIA-748 Standard) cri-
terion.

Step 1: You must define the scope (objec-
tives and deliverables) of the project.
Satisfying this first criterion is where we
lose many projects, but it is critical to the
earned value method. Certain types of pro-
jects, notably software, often give up at this
point and refuse to go further. Too difficult is
the cry. Management often relinquishes,
and the project defaults to simply compar-
ing their cost expenditures – planned costs
versus actual costs. What a shame.

On any project, you must define the
work to be done if for no better reason than
to know where you are at all times and when
you are done. To the extent that you can
based on past experience, you must define
100 percent of the scope of the project.
This is true for any project, but it is particu-
larly critical on any project in which you
intend to measure earned value perfor-
mance.

With earned value, we constantly focus
on the authorized work that has been com-
pleted plus management’s official autho-
rized budget for the completed work. We
express the status as being 18 percent
complete, 27 percent complete, 55 percent
complete, and so forth. Point: If we have
not defined what constitutes 100 percent
of the project, how can we ever measure
our point of percentage completion? We
can not.

How does one define a new job when
specific details are often lacking? There are
no absolute answers. But one of the most
useful of all tools available to any project
manager is the Work Breakdown Structure
(WBS). The WBS is to the project manager
what the organization chart is to the execu-
tive. A WBS allows the project manager to
define a new endeavor by laying out all the
assumed work within the framework of the
WBS and then decomposing each element
into measurable work packages.

Additionally, once the WBS is assumed
to constitute a reasonable portrayal of the
new project, the WBS can then be used to

Start With “Simple” Earned Value
On All Your Projects

When one hears the term Earned Value Management (EVM), there is a tendency to immediately think of the American
National Standards Institute/Electronic Industries Alliance (ANSI/EIA)-748-1998 required by many government agen-
cies and private contractors. We take exception to this formal definition of EVM. While the ANSI/EIA-748 Standard
does require full compliance with 32 precise criteria, and will result in EVM, we suggest that a simple form of EVM can
be gained by implementing just 10 of these formal criteria on all projects – even software projects.

Quentin W. Fleming and Joel M. Koppelman
Primavera Systems, Inc.

June 2006 www.stsc.hill.af.mil 17

Start With “Simple” Earned Value on All Your Projects

take the next critical steps in the project
planning process, including make-or-buy
analysis, risk assessment, scheduling, esti-
mating, and ultimately the authorization of
budgets to proceed.

(Reference: EVM Criterion No. 1 [2]:
Define the authorized work elements for the pro-
gram. A WBS tailored for effective internal man-
agement control is commonly used in this process.)

Step 2: You must determine who will per-
form the defined work, including the
identification of all critical procurements.
It is important to a project to decide who
will perform the defined work.
Experienced workers generally work better
and faster than inexperienced people, but
they also cost more. Often, using an expe-
rienced work force is a good investment.
However, sometimes the project’s own
organization may have no experience in
developing a critical new technology, and
the project must procure the effort from
another company. These choices are called
make or buy decisions, and selecting those
items that must be purchased for the pro-
ject is an essential extension of the scope
definition process.

Why is it important to identify the
work which must be procured outside?
Because project procurements (versus in-
house work) create non-forgiving legal
arrangements. Formal contracts must be
executed. If you commit to buy something
that is not what you need, or the require-
ments must be changed, such changes will
be accommodated, but at a price. Sellers
love to have changes in scope. Each
change gives them an opportunity to get
well from a competitive bid. The earlier the
procured work is identified and responsi-
bilities assigned, the better such packages
can be managed by the project.

By contrast, internal budgets can be
executed in a more informal way, and the
fact that everyone is on the same payroll
allows for some margin of slack. But there
is no slack with the procured work.
Procurements must be done properly at
the start or the project will pay a price.

Lastly, whether the project work is
done by the project’s own organization or
procured from outside the company, the
measurement and reporting of progress
must take place. Inside or outside, the pro-
ject must be able to continuously measure
the earned value versus the actual cost of
the work being performed.

(Reference: EVM Criterion No. 2: Identify
the program organizational structure including
the major subcontractors responsible for accom-
plishing the authorized work, and define the
organizational elements in which work will be
planned and controlled.)

Step 3: You must plan and schedule the
defined work. The earned value technique
could be thought of as representing noth-
ing more than a good scheduling system,
but with authorized resources (the bud-
gets) embedded into the schedule. The
schedule reflects the authorized scope and
timeframe, and the budget is earned for
work as it is accomplished.

A formal scheduling system is thus nec-
essary to the employment of earned value
because it is the vehicle that describes the
project scope, the planned value, and then
measures the resulting earned value. The
project schedule is vital to earned value
because it reflects the project manager’s
baseline planned value for everyone to follow.

On more complex projects, there
should be some method used to isolate the
constraints between one task and other
tasks. What work is holding up other work?
Typically to satisfy this requirement, some

form of critical path methodology will
need to be employed. The critical path (and
near critical paths) on a project must be
aggressively managed in conjunction with
negative earned value schedule variances.

A behind-schedule variance indicates
that the project is falling behind its base-
line plan. If any late tasks are also on the
critical path, or they represent high risk
tasks, they must be aggressively managed
to successful completion.

(Reference: EVM Criterion No. 6: Schedule
the authorized work in a manner which describes
the sequence of work and identifies the significant
task interdependencies required to meet the
requirements of the program.)

Step 4: You must estimate the required
resources and formally authorize bud-
gets. Once the project scope has been fully

defined and subsequently planned and
scheduled, the next requirement is to esti-
mate the resource requirements (budgets)
for all defined tasks. Some projects follow
the start-up sequence of scope, schedule,
and budget while others follow scope,
budget, and schedule. Software projects,
because they are often driven by the avail-
ability of limited resources will schedule
the project based on available people.
Either way can be correct as long as scope
definition comes first.

Each defined WBS element must have
a resource value estimated to complete all
of the specified work, including changes.
Management will then assess the requested
resources and approve a value in the form
of an authorized budget. Individual WBS
budgets should never contain contingen-
cies or management reserves. Reserves or
contingencies, if they exist, must be isolat-
ed and owned by the project manager.

Remember the rule that planned value
represents two things: the scheduled work,
plus the authorized budget. Earned value also
represents two things: the completed autho-
rized work, and the same authorized bud-
get. Thus, in order to plan and then mea-
sure earned value, one needs to schedule all
defined tasks along with the authorized
budget necessary to complete the tasks.

All authorized budgets must be achiev-
able in order to have a viable project baseline.

(Reference: EVM Criterion No. 9:
Establish budgets for authorized work with iden-
tification of significant cost elements [labor, mate-
rial, etc.] as needed for internal management and
for control of subcontractors.)

Step 5:You must determine the metrics
to convert planned value into earned
value. How does one measure the accom-
plishment of planned value into earned
value? One sets up measurable (verifiable)
metrics within the baseline schedules to
quantify the authorized work, and then
measures the completion of the autho-
rized work. Specific milestones or tasks
with weighted values are measured as they
are physically performed. Remember,
earned value project management is noth-
ing more than managing a project with a
resource-loaded schedule.

Since earned value was first introduced,
various methods have been devised to
measure project performance. However,
the most respected methods use some type
of discrete measurement. Specific mile-
stones representing points in time are
assigned values, which when fully complet-
ed, the assigned budgeted values are then
earned. Also, tasks are assigned values,
which can be measured as they are partial-
ly completed, at which time some value is

“The good news in
this story is that there
has been a consistent

application of the
earned value criteria
concept applied for
more than 40 years.

The earned value
criteria have met the

test of time.”

18 CROSSTALK The Journal of Defense Software Engineering June 2006

Software Engineering Technology

assigned to the completed work through
the reporting period.

(Reference: EVM Criterion No. 7: Identify
physical products, milestones, technical performance
goals, or other indicators that will be used to measure
progress.)

Step 6: You must form a performance
measurement baseline and determine the
points of management control referred to
as Control Account Plans (CAPs). Earned
value requires use of an integrated project
baseline. An integrated baseline means that
the defined work must include both the
baseline schedule and the authorized bud-
get. Integration takes place within each of
the specified WBS elements.

Project management must next specify
their points of management focus, referred
to in earned value as CAPs [2]. CAPS are
placed at selected WBS elements and can
best be thought of as sub-projects, project
teams, or subdivisions of the total project.
The sum of the CAPS will constitute the
total project baseline. The actual earned
value performance measurement will take
place within each of the specified CAPs.
Total project performance is simply the
summation of all the detailed CAPs, which
can be placed at any level of the WBS.

On some commercial type contracts, the
total project baseline may sometimes
include such things as indirect costs and
even profits or fees to match the total autho-
rized project commitment. The project
baseline must include whatever executive
management has authorized the project
manager to accomplish.

Most likely, internal company projects
typically do not contain indirect costs or
profits. Many (perhaps most) internal pro-
ject baselines will simply represent the sum
of the defined CAPs, which are often made
up from direct labor hours only. The autho-
rized project baseline constitutes whatever
management has decided it should be.

Note: The referenced EVM criterion
No. 8 contains a lot of words, most of
which are beyond the requirement for sim-
ple earned value applications.

(Reference: EVM Criterion No. 8: Establish
and maintain a time-phased budget baseline, at the
control account level, against which program perfor-
mance can be measured. Initial budgets established
for performance measurement will be based upon
either internal management goals or the external cus-
tomer-negotiated target cost including estimates for
authorized but undefined work. Budget for far-term
efforts may be held in higher-level accounts until an
appropriate time for allocation at the control account
level. On government contracts, if an over-target
baseline is used for performance measurement report-
ing purposes, prior notification must be provided to
the customer.)

Step 7: You must record all direct costs by
project consistently with the authorized
baseline budgets, in accordance with the
organization’s general books of accounts.
This criterion simply requires that project
managers be informed as to how much
money they have spent on their projects – a
simple requirement that some organizations
find extremely challenging. The reason is
many organizations have been functionally
oriented for so long that they have lost their
ability to focus on individual project perfor-
mance. It is absolutely essential that direct
costs be identified by project as work pro-
gresses.

In order to employ earned value on any
project, the actual costs must be aligned to
the authorized project budgets. Remember
the rule that planned value represents the
authorized work plus budget, which is then
converted into completed work and the
same budget to represent the earned value.
Earned value must then be relatable to the

actual costs in order to determine the cost
efficiency factor, called the Cost
Performance Index (CPI). The CPI is likely
the single most important metric for any
project employing earned value.

There is a trend in projects employing
earned value to measure performance on a
weekly basis. We need to understand what
this means, and what it does not mean.
Weekly EVM means the measurement of
internal direct labor hours. On a weekly
basis, the company labor tapes will produce
a planned value, earned value, and actual
hours for internal direct labor hours only.
Direct labor dollars, indirect costs, pur-
chased articles, travel, etc., are generally not
available on a weekly basis. Weekly perfor-
mance measurement takes place on the
internal direct labor hours only.

(Reference: EVM Criterion No. 16: Record
direct costs in a manner consistent with the budgets

in a formal system controlled by the general books of
account.)

Step 8: You must continuously monitor the
earned value performance to determine
cost and schedule departures from the
baseline plan: both schedule variances
(earned value less the planned value) and
cost variances (earned value less the actu-
al costs). Projects employing earned value
must monitor their cost and schedule results
against the authorized baseline for the dura-
tion of the project. Management will focus
their primary attention on exceptions to the
baseline plan, particularly those that are
greater than previously defined acceptable
tolerances. Earned value is thus a management
by exception concept.

A negative earned value schedule vari-
ance simply means that the value of the
work performed does not match the value
of the work scheduled, that is, the project is
falling behind in its scheduled work plan.
Each behind-schedule task should be
assessed as to its criticality. If the late tasks
are on the critical path, or if the tasks carry
a high risk to the project, then efforts must
be taken to get the late tasks back on sched-
ule. However, additional project resources
should not typically be spent on low-risk
tasks or tasks that have positive critical path
float.

The single most important aspect of
employing earned value is the cost efficien-
cy readings it provides. The difference
between the value of work earned, versus
the costs incurred to accomplish the work
provides the cost efficiency factor. If the
project spends more money than it receives
in value, this reflects an overrun condition.
Overruns are typically non-recoverable.
Overruns expressed as a percentage value
have been found to deteriorate unless the
project takes aggressive actions to mitigate
the condition.

Perhaps of greatest benefit, the earned
value cost efficiency rate has been found to
stabilize from the 20 percent point of a pro-
ject completion. The cost efficiency factor,
CPI, is thus an important metric for any
project manager or portfolio executive to
monitor.

(Reference: EVM Criterion No. 22: At least
on a monthly basis, generate the following informa-
tion at the control account and other levels as neces-
sary for management control using actual cost data
from, or reconcilable with, the accounting system:
1. Comparison of the amount of planned budget

and the amount of budget earned for work
accomplished. This comparison provides the
schedule variance.

2. Comparison of the amount of the budget earned
and the actual (applied where appropriate)
direct costs for the same work. This comparison

“… whether the project
work is done by the

project’s own
organization or procured

from outside of the
company the

measurement and
reporting of progress
must take place.”

June 2006 www.stsc.hill.af.mil 19

Start With “Simple” Earned Value on All Your Projects

provides the cost variance.)

Step 9: Using earned value data, you must
forecast the final required costs based on
actual performance and keep manage-
ment apprised so they can take corrective
actions if necessary. One of the more ben-
eficial aspects of earned value is that it pro-
vides the capability to quickly and indepen-
dently forecast the total funds required to
complete a project, commonly referred to as
the estimate at completion. Based on actual
cost and schedule performance against the
baseline plan, a project is able to accurately
estimate the total funds it will require to fin-
ish the job within a finite range of values.

Often, management or customers will
have a preconceived notion of what final
costs should be or what they would like
them to be. If the earned value statistical
forecast of estimated final costs are greater
than the official project manager’s estimate to
complete the project, someone needs to rec-
oncile these professional differences of
opinion.

Actual performance results on any pro-
ject, good or bad, are in effect sunk costs.
Such costs represent what the project has
actually achieved in performance. Thus any
improvements in performance must come
from the future work – tasks that lie ahead
of the project’s status date. Earned value
allows the project manager to accurately
quantify the cost and schedule performance
achieved to date. And if the results achieved
to date are less than that desired by manage-
ment, the project can exert a more aggres-
sive posture to influence the future work.

Earned value allows the project to accu-
rately quantify the value of its work it has
achieved. It also allows the project to quan-
tify the value of the future work in order to
stay within the objectives set for the project
by management. Likely, the single most
respected method to forecast the final cost
results is to assume that the project will con-
tinue at its established cost efficiency rate,
CPI; it will get better or worse within a nar-
row, finite range.

(Reference: EVM Criterion No. 27: Develop
revised estimates of cost at completion based on per-
formance to date, commitment values for material,
and estimates of future conditions. Compare this
information with the performance measurement
baseline to identify variances at completion important
to company management and any applicable cus-
tomer reporting requirements including statements of
funding requirements.)

Step 10: You must manage the authorized
scope by approving or rejecting all
changes, and incorporating approved
changes into the project baseline in a time-
ly manner. The project performance mea-

surement baseline, initially put into place at
the project start, is only as good as the man-
agement of all proposed new changes to the
baseline for the duration of the project.
Performance baselines quickly become
invalid simply by failing to incorporate
changes into the approved baseline with the
addition or deletion of added work scope.

All new change requests of the project
must be quickly addressed, either by approv-
ing such changes or by rejecting them. All
project managers should have sufficient
authority to say no.

In order for the initial baseline to remain
valid, every change must be controlled.
Maintaining an approved baseline can be as
challenging as the initial definition of the
project scope at the start of the project.

(Reference: EVM Criterion No. 28:
Incorporate authorized changes in a timely manner,
recording the effects of such changes in budgets and
schedules. In the directed effort prior to negotiation of
a change, base such revisions on the amount estimat-
ed and budgeted to the program organizations.)

Summary
Earned value project management is not a
difficult concept to understand or employ.
It is certainly not as complicated a process
as some have made it to be throughout the
years. We have concluded that effective
earned value can be achieved by simply
applying these 10 steps and can be applied
to any project, of any size, in any industry.
Earned value is for the masses.

Again, we are not taking issue with the
EVMS or ANSI-EIA-748 Standard. What
we are suggesting is starting with the

implementation of earned value in a limit-
ed way, on all projects, by simply taking the
10 simple steps as outlined here.

As you read over these 10 steps, we hope
you come to the conclusion that employing
earned value project management consists
of nothing more than simply following fun-
damental best project management process-
es. As was stated nicely by a gentleman from
the United Kingdom:

Whilst you can practice good project
management without EVM, you can-
not practice EVM effectively without
good project management. [3]

We could not have stated it better.u

Note
1. The numbers as shown relate to the

sequence of the listed criteria in both the
EVMS and ANSI-EIA-748 Standard.

References
1. Fleming, Quentin W. and Joel M.

Koppelman. Earned Value Project
Management. 3rd ed. Newtown
Square, PA: Project Management
Institute, 2005.

2. Project Management Institute. A
Guide to the Project Management
Body of Knowledge. 3rd ed. Newtown
Square, PA: Project Management
Institute, 2004.

3. Crowther, Steve. “Best of British:
Earned Value Management.” British
Association for Project Management
June 1999:13.

About the Authors
Quentin W. Fleming is
a management consul-
tant specializing in
earned value. He has
been a consultant to the
senior staff at Primavera

Systems, Inc. since 1993. He, along with
Joel M. Koppelman, is co-author of
“Earned Value Project Management,”
published initially in 1996 by the Project
Management Institute. The third edition
of this book was released in 2005. His
personal Web site is <www.quentinf.
com>

14001 Howland WY
Tustin, CA 92780
Phone: (714) 731-0304
Fax: (714) 731-0304
E-mail: quentinf@comcast.net

Joel M. Koppelman is
the co-founder and Chief
Executive Officer (CEO)
of Primavera Systems,
Inc. He, along with
Quentin W. Fleming, is

co-author of “Earned Value Project
Management,” published initially in 1996
by the Project Management Institute.
The third edition of this book was
released in 2005. His corporate Web site
is <www.primavera.com>.

Primavera Systems, Inc.
Three Bala Plaza West
Bala Cynwyd, PA 19004
Phone: (610) 667-8600

The worth of Earned Value
Management (EVM) has been

demonstrated over the 35 plus years of
application to many projects. There is
substantive evidence of its positive influ-
ence on project outcome results. EVM
fosters several good management prac-
tices that contribute to successful project
performance: organization, accountabili-
ty, planning, risk assessment, tracking,
reporting, controlling, etc. Overarching
these elements, in my opinion, is the
most significant contribution to the
improvement of the state of manage-
ment practice is that EVM has brought
science to the management of projects.
Without numbers, scientific management
is not possible. Because of EVM, project
managers have numbers with a sound
basis. Performance of a project has a
quantitative description with meaning.
And, in turn, the numerical description
provides project managers with informa-
tion useful for guiding and controlling
the project. From a relatively simple con-
cept, a quantum leap has been made for
the management of projects – Earned
Value Management.

Several formulas derived from EVM
measures are available for predicting the
final cost of projects. These cost predic-
tion formulas have been well studied
over the last 15 years. From the research,
the EVM community has an under-
standing of project behaviors. We now
know how to calculate the most opti-
mistic and predicted outcome for cost.
And, we understand that projects per-
form less efficiently as they progress
toward completion. For very large pro-
jects, we know from early results the
range of likely final cost outcomes.
Significant strides have been made in
project management from the use of
EVM measures; project managers now
have available a few research-derived
prediction tools.

Is There a Path to Improved
Prediction?
In truth, advancement of outcome predic-
tion knowledge for EVM-based projects
has remained stagnant for nearly a decade.
The prediction findings cited previously
were established several years ago and
have not been improved upon. Although
there is more than 35 years of numerical
evidence of project performance for
many types of applications (defense, con-
struction, software, etc.) from several
countries, this EVM data is not available
for research. If we could only get by the
unfounded worry that by divulging our
data for completed projects we are some-
how giving up sensitive information that
could somehow negatively impact our
company. Possibly, the influence of the
Sarbanes-Oxley Act [1] may help to over-
come this roadblock to advancement of
EVM. Let us hope so. The sharing of data
will not only lead to improved prediction
methods, it will also promote continuing
improvements to EVM itself.

In the previous discussion, I have
established that a researcher, desiring to
test a theory concerning EVM, has only
limited data – specifically, his own. Thus,
the question becomes: “What advance-
ment can be made knowing the
researcher’s hypothesis cannot be fully
tested and validated because of the inac-
cessibility of broad-based data?” At this
time, many of you will probably say, “Not
much.” Even with today’s situation, we
can improve our capability to predict out-
comes. Here is my answer to the question:
Apply well-established statistical methods.
Statistical methods are proven calculation
techniques by which one can infer project
outcomes with confidence. Using these
methods, past performance can provide a
vision of the future.

Is It Difficult to Do?
Good question. Without a background in

statistics, it may be somewhat overwhelm-
ing in the beginning. However, with a small
amount of training in the applicable areas
and some practice with EVM data, profi-
ciency will come. In the absence of statis-
tical tools applicable to EVM, you will
need to develop spreadsheets until the
commercial EVM tool sources catch up to
the market. Creating the spreadsheets will
not be difficult for someone adept at it and
can likely be accomplished in semi-profes-
sional form within a short amount of time
(my estimate is two to three weeks).

Our Focus
Before we lose ourselves in the discussion
of statistics, the focus of this article needs
to be stated. The objective is to provide
project managers the ability to answer the
following questions:
• What is the likelihood for having a

successful project with this plan?
• How much should be allocated in

reserves to achieve a high probability
of success?

• If reserves are constrained to main-
tain the bid price in the competitive
range, what is the probability of hav-
ing a successful outcome?

• Can we state with confidence when
the project can be expected to com-
plete and simultaneously describe its
projected final cost?
Certainly, with the ability to answer

these questions, project managers and
their superiors can make better informed
decisions. By taking the correct manage-
ment action at the right time, we can
expect improvement in the success rate
for projects and the avoidance of failure.

Applying Statistics to EVM
To apply statistical methods, a few prop-
erties of data are needed before we can
address these questions. First, we need to
establish that the data can be described
by Normal distribution. If it can, then

2200 CROSSTALK The Journal of Defense Software Engineering June 2006

Statistical Methods Applied to EVM: The Next Frontier
Walt Lipke

Retired Software Manager

An objective of Earned Value Management is to provide a means for predicting the outcome of a project. Inherently, the out-
come is largely determined in the planning, and completion forecasting commonly occurs with analysis of project performance.
Having the project plan, management would like to be able to quantify its risk: What is the likelihood for having a success-
ful project with this plan? How much should be allocated to reserves to achieve a high probability of success? If reserves are
constrained to maintain a bid price in the competitive range, what is the probability of having a successful outcome? During
project execution, management desires to answer this question: Can we state with confidence when the project can be expected
to complete and simultaneously describe its projected final cost? The application of statistical methods facilitates answering
these questions. This article describes the elements necessary for performing statistical analysis.

our ability to draw inferences and make
predictions is greatly simplified. The sec-
ond property is the value representing
the mean or average value of the obser-
vations. The third property is the varia-
tion in the observed data values. These
properties are interconnected; without
the characterization of the data (i.e., its
type of distribution), neither the mean
nor the variation can be determined cor-
rectly. And without the mean and varia-
tion, the focus questions cannot be
answered.

Let us assume the observances of the
EVM indicator are normally distributed;
Figure 1 is an example of Normal distrib-
ution. When this is the case, the distribu-
tion is symmetrical around its peak, the
most frequently observed value. The
mean of the distribution is the value asso-
ciated with the peak. The width or spread
of the distribution is a function of the
variation in the observed values – the larg-
er the spread, the greater the variation1.

From this information, inferences or
predictions can be made. For example, we
can calculate at a specified precision the
range of values for the EVM indicator
which encompasses its true value or pre-
dicted outcome value. In statistical terminolo-
gy, the end values of this range are confi-
dence limits (CL). These limits are generally
calculated at 90 or 95 percent precision
and are commonly termed xx percent confi-
dence level. For example, the CL calculated
using the 95 percent CL provide a range
of values in which we have 95 percent
confidence of including the true value of
the mean. To make this clearer, I will
express it mathematically [2]:

CL = Mean ± Z * σσ /√n

where,

Z is a value representing the 90 or 95

percent confidence level

σσ is a number representing the

variation in the observed values

n is the number of observances

This equation is not very daunting, and
possibly you are beginning to see the use-
fulness of calculating CL. Clarity with
regard to its application should be realized
from the coming examples.

Another fundamental needed for
having the ability to answer our ques-
tions is the calculation of the probability
for achieving a specified result. In
essence, the calculation obeys the above
equation. However, instead of calculat-
ing confidence limits, we compute the
value of Z [2]:

Z = (X – Mean) ÷ (σσ /√n)

where,

X is a value for which an associated

probability is desired

From the calculated value of Z, the
probability that the true value of the mean
is less than or equal to the value X can be
obtained from a mathematical table of
Normal distribution [2], or by using a
spreadsheet function to perform the con-
version. For example, the statistical func-
tion NORMSINV from Microsoft Excel
may be used to perform the calculation.

Although it may not be totally clear at
this point, with these two fairly simple
equations, every one of the earlier ques-
tions can be answered.

Calculation Examples
For understanding, let us perform a few
calculations pertinent to our objectives.
We will continue with the assumption
that the periodic observations of the
Cost Performance Index (CPI) are nor-
mally distributed. For the example, the
cost performance efficiency (cumulative
CPI) of a software project is found to be
equal to 0.931. The cumulative value of
CPI is taken to be a good estimate of
the mean of the observations. The vari-
ation of the periodic values of CPI, i.e.,
the estimate of the standard deviation
(σ), is equal to 0.340. The number of
periodic observations is 16. The level of
confidence desired is 90 percent; from a
normal distribution table, the value of Z
is determined to be 1.645. From this
information, we can calculate the confi-

dence limits:

CL = Mean ± Z * σσ/√n

= 0.931 ± (1.645) * (0.340 / √16)

= 0.931 ± 0.140

= 1.071, 0.791

The values calculated for the confidence
limits, 0.791 and 1.071, identify the range
for the mean of CPI. Furthermore, we have
90 percent confidence that the true value of
the mean of CPI is within these limits.

With this information, we can predict
the high and low values of the final cost
with 90 percent confidence using the fol-
lowing formula:

IEAC = BAC/CL

where,

IEAC (Independent Estimate at

Completion) is the forecast cost

at project completion

BAC (Budget at Completion) is the

planned cost for the project

Assuming BAC = $1,000, the range for
final cost is $1,264 and $934. Now, assume
that in order to not consume all the man-
agement reserve, the cost performance
efficiency must be greater than or equal to
0.850. Another way of viewing this is the
reciprocal of CPI (mean), 1/0.931 =
1.074, must be less than or equal to the
reciprocal of 0.850, or 1.176. With these
numbers and the parameter values provid-
ed in the previous example, the probabili-
ty of a having a successful project can be
computed:

June 2006 www.stsc.hill.af.mil 21

Statistical Methods Applied to EVM: The Next Frontier

 1

0

0.5

1

1.5

-3 -2 -1 0 1 2 3

Standard Deviation

F
r
e

q
u

e
n

c
y

o

f
O

c
c

u
r
r
e

n
c

e

0

0.5

1

1.5

2

2.5

0 1 2 3 4 5 6

Observed Value

F
r
e

q
u

e
n

c
y

o

f
O

c
c

u
r
r
e

n
c

e

0

0.5

1

1.5

-3 -2 -1 0 1 2 3

Log of Observed Value

F
r
e

q
u

e
n

c
y

o

f
O

c
c

u
r
r
e

n
c

e

Normal Distribution Right -Skewed

Figure 1: Normal Distribution

22 CROSSTALK The Journal of Defense Software Engineering June 2006

Software Engineering Technology

Z = (X – Mean) ÷ (σσ/√n)

= (1.176 – 1.074) ÷ (0.340/√16)

= 0.102 ÷ 0.085

= 1.200

Converting Z (using Normal distribution),
we obtain the probability of the project’s
final cost being less than its allocated bud-
get to be 88.5 percent.

Is It Really That Simple?
No. I wish it was. The previous descrip-
tion of the calculations illustrates the idea
in its simplest form, but there are six ele-
ments which add complexity:
• Normality.
• Finite population.
• Equal samples.
• Anomalous behavior.
• Fewer than 30 observations.
• Increasing inefficiency.

Recall in the previous discussion and
the calculation examples, it was assumed
that the periodic values of CPI are nor-
mally distributed. This is not the case;
the distribution is right-skewed. From
previous work, I have shown that by
applying logarithms, the distributions of
CPI and Schedule Performance Index
SPI(t)2 can be made to appear normal [3].
Figure 2 illustrates the transformation of
a right-skewed distribution to its sym-
metrical normal distribution by the
application of logarithms.

The second element, finite population,
is extremely significant. Statistical meth-
ods assume the population under exami-
nation is infinite. However, projects are
finite – they have a start and an end. For
finite populations, the statistical calcula-
tions must be adjusted. As the project
moves toward completion, the adjustment
causes the probability of success to move

toward 100 percent or zero; i.e., the pro-
ject completed successfully or it did not.
Likewise, the finite population adjustment
causes the upper and lower confidence
limits to approach each other, concluding
at the same value, the mean.

Statistics assumes that each obser-
vance is of equal size. For example, if we
are trying to infer the proportion of black
marbles to white ones in a huge barrel, we
might choose to draw independently 10
samples of 10 marbles. It would not be
correct statistical practice to draw 10 sam-
ples of varying size. In our situation, each
observance of CPI represents differing
amounts of actual cost. To perform the
statistical analysis in the appropriate man-
ner, periodic CPIs must be developed for
equal cost samples [4]. From the project
data examined to date, the estimate of the
variation is slightly smaller for equal cost
samples than its value calculated from
simply using the reported periodic CPI
values.

Certainly, if there is one periodic value
that is much different from the remainder,
we have to question whether or not to
include it in our calculations. By including
the anomaly, we might predict a project
outcome much differently from the pre-
diction made excluding it. The inclusion
of the anomaly has the potential of caus-
ing an incorrect management action as
well. My recommendation is to identify
anomalies using the methods of Statistical
Process Control, applying the Shewhart
rule only [5]. Removing anomalous behav-
ior improves project outcome prediction
and its identification enables appropriate
management action.

When the number of observances is
fewer than 30, it is accepted practice to
perform the statistical calculations using

the Student–t distribution3. When the
number is 30 or greater, Normal distribu-
tion is used.

Lastly, from research of CPI behavior,
it is known that cost performance effi-
ciency tends to be worse at project com-
pletion than it is earlier in the project [6].
Although a similar study of schedule per-
formance behavior has not been made, it
is conjectured that SPI(t) behaves analo-
gously to the findings for CPI [7]. Thus,
from this tendency to worsen, the fore-
cast final CPI and SPI(t) will generally be
less than its respective present value. To
account for this behavior, compensation
is applied at each of the periods to fore-
cast the final values [7]. The compensa-
tion affects the variation calculated; the
variation of the compensated periodic
values of CPI, or SPI(t), is likely to be
somewhat less than for the uncompensat-
ed values.

Hopefully these complexities are not
an overwhelming deterrent. Obviously,
they do add to the calculation burden.
However, with some ingenuity all can be
handled without much trouble through
the use of spreadsheets, dealing with the
complexity is really not that difficult. Keep
in mind the benefit to your project man-
agement having reliable outcome predic-
tion. The value of good prediction far
outweighs the discomfort of accommo-
dating the complicating elements dis-
cussed.

Calculation Examples –
Including Complexity
Let us perform the calculations again and
account for the elements adding complex-
ity. For these calculations, assume that
none of the observations exhibit anom-
alous behavior and the distribution is log-
normal. Also assume the compensated
CPI mean is 0.911 and that the variation
of the compensated monthly values is
0.250 for the Normal distribution. Note
that both values are somewhat less than
those used in the earlier example, just as
we would expect. Recall from earlier dis-
cussion that the final cumulative CPI
tends to be less than the present value, and
the variation is smaller from the effects of
equal samples and applying compensation.
For this example, the total population of
observances for the project is 21, and
from the previous example the number of
observations (n) is equal to 16.

For the confidence limits, the follow-
ing calculation is made:

ln CL = ln Mean ± Z * σσ/√n * Adjustment

for finite population
4

0

0.5

1

1.5

-3 -2 -1 0 1 2 3

Standard Deviation

F
r
e

q
u

e
n

c
y

o

f
O

c
c

u
r
r
e

n
c

e

0

0.5

1

1.5

2

2.5

0 1 2 3 4 5 6

Observed Value

F
r
e

q
u

e
n

c
y

o

f
O

c
c

u
r
r
e

n
c

e

0

0.5

1

1.5

-3 -2 -1 0 1 2 3

Log of Observed Value

F
r
e

q
u

e
n

c
y

o

f
O

c
c

u
r
r
e

n
c

e

Normal Distribution Right -Skewed

Figure 2: Transformation to Normal Distribution

June 2006 www.stsc.hill.af.mil 23

= ln (0.911) ± (1.645) * (0.250/√16) *

√ ((21 – 16)/(21 - 1))

= –0.093 ± 1.645 * 0.062 * 0.5

= –0.093 ± 0.051

= –0.042, - 0.144

CL = 0.959, 0.866

Using the confidence limits, the final cost
prediction is calculated: IEAC = $1,155,
$1,043.

The probability of having a successful
project is computed as follows:

Z = (ln X – ln Mean) ÷

[(σσ/√n) * Adjustment for finite

population]

= (ln 1.176 – ln 1.074) ÷ [(0.250/√16) *

√((21 – 16) / (21 – 1))]

= (0.163 – 0.093) ÷ [(0.250/√16) *

√((21 – 16)/(21 – 1))]

= 0.070 ÷ [0.062 * 0.5]

= 2.240

Converting Z, using the Student-t distrib-
ution, the probability of having a suc-
cessful project outcome is determined to
be 98.0 percent.

The differences between these esti-
mates and those computed previously are
very noticeable. The range of the confi-
dence limits is very much smaller for the
more complex calculation ($112 versus
$330), thereby causing the final high and
low cost estimates to be much closer. The
probability of having a successful project
is increased by nearly 10 percent for the
second calculation (even when using the
Student-t distribution). In other words,
by accounting for the complexities, the
project manager has a much more refined
estimate of the final outcome.

Summary
From the past studies performed on
EVM measures from large defense con-
tracts, managers and analysts have some
ability to forecast the final cost of pro-
jects. The ability to advance forecasting
beyond its present status, that is to pro-
jects which are neither defense related
nor large (as are many software or infor-
mation technology projects), is hampered
by the lack of accessible broad-based
data for research. Consequently, re-
searchers have little facility to test their
hypotheses.

To circumvent the lack of data for
experimentation, the application of sta-
tistics is proposed. The use of statistical
methods for inferring outcomes is a long-
standing mathematical approach. The
methods applied to EVM measures are
shown to be relatively simple in concept.
However, several elements are discussed,

which cause the application to have
added complexity. Including the com-
plexity elements in the method is shown
to provide managers with a more refined
forecast of project outcome.

Final Remarks
My desire for this article is that it will
promote interest in the application of
statistical methods to EVM measures. If
interest is generated, it is my belief that
other positive behaviors may follow:
• Project data records will become

more meticulous and, thus, become
more useful for further research.

• Data sharing will occur leading to a
common EVM data repository for
researchers.

• As the use of statistical methods
propagates, automated tools will
emerge, in turn further expanding the
application.

• If this vision of the next frontier
becomes reality, project management
will make another quantum leap for-
ward.u

Notes
1. The statistical variation of observed

measures is expressed as standard
deviations. See [2] (or any text on sta-
tistics) for a complete description.

2. SPI(t) is the Schedule Performance
Index (time based) and is a measure
of schedule performance efficiency
[8].

3. The Student-t distribution approach-
es the Normal distribution as the
number of observations becomes
large (>30) [9].

4. The adjustment for a finite popula-
tion is √ [(N–n) / (N–1)], where n is
the number of observations made
thus far and N is the total population
when the project is complete; that is,
the number of observations expected
to be made.

References
1. The Sarbanes-Oxley Act of 2002. Pub.

L. H.R.3763. 7 Jul. 2002. <http://news.
f i n d l a w. c o m / h d o c s / d o c s /
gwbush/sarbanesoxley072302.pdf>

2. Crow, E.L., F.A. Davis, and M.W.
Maxfield. Statistics Manual. New York:
Dover, 1960.

3. Lipke, W. “A Study of the Normality of
Earned Value Management Indicators.”
The Measurable News Dec. 2002: 1-16.

4. Lipke, W. “Achieving Normality for
Cost.” The Measurable News
Fall/Winter 2003: 1-11.

5. Pitt, H. SPC for the Rest of Us.
Reading, MA: Addison-Wesley, 1995.

6. Christensen, D.S., and S.R. Heise. “Cost
Performance Index Stability.” National
Contract Management Journal 25
(1993): 7-15.

7. Lipke. W. “Connecting Earned Value to
the Schedule.” CrossTalk June 2005
<http://www.stsc.hill.af.mil/crosstalk/
2005/06/index.html>.

8. Lipke, W. “Schedule Is Different.” The
Measurable News Summer 2003: 31-34.

9. Wagner, S.F. Introduction to Statistics.
New York: Harper Collins, 1992.

Statistical Methods Applied to EVM … the Next Frontier

About the Author

Walt Lipke recently
retired as the deputy chief
of the Software Division
at the Oklahoma City Air
Logistics Center. The divi-
sion employs approxi-

mately 600 people, primarily electronics
engineers. He has more than 35 years of
experience in the development, mainte-
nance, and management of software for
automated testing of avionics. In 1993,
with his guidance, the Test Program Set
and Industrial Automation (TPS and IA)
functions of the division became the first
U.S. Air Force activity to achieve Level 2 of
the Software Engineering Institute’s
Capability Maturity Model® (CMM®). In
1996, these functions became the first
software activity in federal service to
achieve CMM Level 4 distinction. Under
Lipke’s direction, the TPS and IA func-
tions became ISO 9001/TickIT registered
in 1998. These same functions were hon-
ored in 1999 with the Institute of
Electrical and Electronics Engineers’
Computer Society Award for Software
Process Achievement. Lipke has published
several articles and presented at confer-
ences on the benefits of software process
improvement and the application of
earned value management and statistical
methods to software projects. He is the
creator of the technique Earned
Schedule©, which extracts schedule infor-
mation from earned value data. Lipke is a
professional engineer with a master’s
degree in physics.

1601 Pembroke DR
Norman, OK 73072
Phone: (405) 364-1594
E-mail: waltlipke@cox.net

© 2003 by Walt Lipke. All Rights Reserved.

24 CROSSTALK The Journal of Defense Software Engineering June 2006

Before we get into describing industry
best practices, it is good to under-

stand common problems with process
documentation. Table 1 lists a summary of
common problems.

How do we address the common

problem with process documentation?
One place to start is to recognize that not
all documentation is used the same way. In
this article, the term process documentation is
used interchangeably with policies, standards,
processes, and procedures. Table 2 contains a

list of the types of process documentation
and the ways in which these are used.

Figure 1 [2] identifies the types of
process documents and some critical rela-
tionships among those documents.

Process Documentation
Usage Modes
Processes and procedures have different
levels of users [3]. Some users have never
used the process (i.e., beginner users).
Some users have used the process a few
times, but need guidance and lessons
learned (i.e., intermediate users). Some
users have used the process many times
and may even be responsible for running
the process (i.e., experts). The next sections
will describe the three levels of documen-
tation: expert, intermediate, and beginner.

Expert Mode Documentation
Expert mode documentation is short and
concise [3]. When a pilot flies an airplane,
he or she does not pull out a training man-
ual; they use expert checklists for takeoff
and landing. Expert mode documentation
is made for experts and does not contain
any training material. See Figure 2 (page
26) for an example of expert mode.

Most people want expert mode docu-
mentation because it is short. The prob-
lem with expert mode documentation is
that not everybody is an expert. For exam-
ple, not everyone can read a checklist for a
rocket scientist (sometimes you really need
to be a rocket scientist). Putting expert
mode documentation in the hands of
non-experts can be dangerous.

Why do experts need documentation if
they are experts? Because people can for-
get things. This is why checklists are so
powerful. Experts can also leave your
organization, taking precious organiza-
tional knowledge with them. This is why
expert knowledge should be documented.

Defining Short and Usable Processes©

Many processes and procedures are large or difficult to use. The situation becomes even worse when complexity is involved.
Putting large or difficult-to-use documentation on a Web site does not usually solve the problem. This article describes best
practices for defining short and usable processes and procedures. These best practices have been used at real organizations over
the last few years to define short and usable processes and procedures. Measurable results include cutting organizational
processes and procedures in half while making them more usable (e.g., reducing 600 pages to 300 pages). The objectives of
this article are to describe common problems with process documentation, including some human aspects of using process doc-
uments, discuss some best practices for defining short and usable processes and procedures, describe some success stories in real
organizations, and provide some lessons learned.

Timothy G. Olson
Quality Improvement Consultants, Inc.

© 2006 Process Assets, LLC. All Rights Reserved.

Description

Usage

Table 2: Types of Process Documentation and Their Uses

1. Too Big Most process documentation is too big. Blaise Pascal

once said, "I have made this letter longer than usual

because I lack the time to make it shorter." This quote

applies to most processes and procedures. Process

documentation should be short, concise, and usable.

Problem

2. Not Enough

 Pictures

Most processes and procedures lack pictures and

diagrams. If a picture is worth a thousand words, process

documentation should have more pictures. Good process

documentation should be a mixture of pictures and words.

The best pictures are well-thought-out diagrams. The best

diagrams for process documentation are process models.

3. Poorly Designed

 Documentation

Processes and procedures usually violate documentation

design and good writing principles. Principles such as

chunking1 (i.e., seven plus or minus two), consistency,

etc., are usually not used [1].

4. Unusable and

 One Size Fits All

Most processes and procedures are not designed with

customers and users in mind, making them hard to use.

Much documentation also has the one-size-fits-all

mentality because it does not consider expert,

intermediate, and beginner users.

5. Mixed Information

 Types

Policies, standards, processes, procedures, and training

are all different types of information [2]. Most process

documentation mixes these different types of information

into the same paragraphs as if they were all used the

same way. Each one of these document types has a

different usage scenario.

6. Written

 Sequentially

Process documentation is not a novel, and is not meant

to be read linearly (i.e. from beginning to end). Process

documentation is reference material that is meant to be

used non-linearly. This is why labeling is critical so that

users can find information quickly [1].

7. Hard-to-Find

 Information Fast

Users of documentation will look for information for a few

minutes. But if they cannot find the information quickly,

many times they will give up in frustration and not use the

processes or procedures. This can lead to serious

nonconformance problems for many organizations.

8. Shelfware Most process documentation becomes shelfware (i.e.

collects dust on a shelf). Online processes (e.g. on an

intranet) must be well designed or they will also

become unused Web-ware.

Policy

Document Type

• Used by senior management to set direction in an

 organization.

• States principles that organizations should follow.

Standard • Specifies the sections of a document, and provides a

 description of what goes into those sections.

• Makes the content of documents repeatable.

Process • What happens over time to produce a desired result(s).

• Should answer the five Ws: who, what, where, when,

 and why.

Procedure • How-to or step-by-step information [1]. Example

 procedures are checklists, forms, and step/action tables.

• Implements part of a process.

Table 1: Common Problems Process Documentation

Defining Short and Usable Processes

June 2006 www.stsc.hill.af.mil 25

Intermediate Mode Documentation
Intermediate mode documentation uses
the expert mode documentation, but
builds and adds to it by providing guid-
ance and lessons learned. For example,
guidance is very useful to people who do
not have to follow a process or procedure
very often. Even experts forget guidance
and lessons learned for an annual process
or an infrequently used process. Having
guidance available to those who need or
want it is very useful. Both Figure 2 and
Table 3 (page 26) together are examples of
intermediate mode.

Typically, guidance and lessons learned
are not auditable. Process phases and pro-
cedure steps are required and auditable, but
the supporting guidance and lessons
learned are there for support only. One best
practice is to distinguish between required
steps and optional guidance. Some organi-
zations have chosen to label guidance and
lessons learned with a guidance label.

Beginner Mode Documentation
Beginner mode documentation uses the
intermediate mode documentation, but
adds training to it. Beginners should feel
free to use the training manuals until they
become familiar with the process.
Beginners should also be mentored as
appropriate. Some processes are simple,
and some are complex. Complex process-
es should have formal training and be fol-
lowed up by mentoring.

Usage Problem and Solutions
How can an organization afford to pro-
vide three versions of the same documen-
tation? Someday software could allow this
by just setting a documentation mode
(expert/intermediate/beginner) and the
user could see the appropriate informa-
tion. A best practice that solves this prob-
lem is to define the process in chunks at the
intermediate level (i.e., one version in
intermediate mode). Add in training for
the beginner and the expert can grab the
appropriate chunks. Another best practice
is that short, expert-mode documentation
can also be provided for the experts.

What Is a Good Process?
The purpose of this section is to describe
the required process elements necessary to
define a good process. Table 4 (page 27)
describes the practical who, what, where,
when, why, and how process questions [2].
Each question is answered by a key
process element. By addressing all the
process elements on one page, the five W’s
(who, what, where, when, and why) can be
represented in a diagram on one page in

expert mode (Figure 2).
A good process should include the fol-

lowing:
• Address the five W’s and answer the

key process questions.
• Have both pictures and words (most

people prefer pictures, but some peo-
ple prefer words).

• Be usable and well written.
• Be well chunked and labeled so chunks

can be found quickly [1].
• Be short (e.g., a diagram that answers

the five W’s on one page).

A Best Practice: Process
Modeling
A good process should have pictures. It is
said that a picture is worth a thousand
words. However, not all pictures are good
pictures. Some pictures cause confusion,
and some pictures are more harmful than
helpful. So what is a good picture? Process

modeling is a best practice that helps
design good diagrams that address the five
W’s. For a short and usable example, see
Figure 2.

What is a process model? A process
model M models R (reality) if M answers
questions about R [4]. A good process
model should answer the key process
questions (i.e. the five W’s in Table 4). A
process model is typically represented by
diagrams and powerful notations that rep-
resent roles, activities, work products, and
the relationships between them.

What Is a Good Procedure?
A good procedure consists of how-to, step-
by-step information, and comes in three
forms: checklists, forms, and step/action
tables [3].

Checklists
Checklists are powerful repeatable repre-

Table 2: Types of Process Documentation and Their Uses

Description

Usage

Table 2: Types of Process Documentation and Their Uses

1. Too Big Most process documentation is too big. Blaise Pascal

once said, "I have made this letter longer than usual

because I lack the time to make it shorter." This quote

applies to most processes and procedures. Process

documentation should be short, concise, and usable.

Problem

2. Not Enough

 Pictures

Most processes and procedures lack pictures and

diagrams. If a picture is worth a thousand words, process

documentation should have more pictures. Good process

documentation should be a mixture of pictures and words.

The best pictures are well-thought-out diagrams. The best

diagrams for process documentation are process models.

3. Poorly Designed

 Documentation

Processes and procedures usually violate documentation

design and good writing principles. Principles such as

chunking1 (i.e., seven plus or minus two), consistency,

etc., are usually not used [1].

4. Unusable and

 One Size Fits All

Most processes and procedures are not designed with

customers and users in mind, making them hard to use.

Much documentation also has the one-size-fits-all

mentality because it does not consider expert,

intermediate, and beginner users.

5. Mixed Information

 Types

Policies, standards, processes, procedures, and training

are all different types of information [2]. Most process

documentation mixes these different types of information

into the same paragraphs as if they were all used the

same way. Each one of these document types has a

different usage scenario.

6. Written

 Sequentially

Process documentation is not a novel, and is not meant

to be read linearly (i.e. from beginning to end). Process

documentation is reference material that is meant to be

used non-linearly. This is why labeling is critical so that

users can find information quickly [1].

7. Hard-to-Find

 Information Fast

Users of documentation will look for information for a few

minutes. But if they cannot find the information quickly,

many times they will give up in frustration and not use the

processes or procedures. This can lead to serious

nonconformance problems for many organizations.

8. Shelfware Most process documentation becomes shelfware (i.e.

collects dust on a shelf). Online processes (e.g. on an

intranet) must be well designed or they will also

become unused Web-ware.

Policy

Document Type

• Used by senior management to set direction in an

 organization.

• States principles that organizations should follow.

Standard • Specifies the sections of a document, and provides a

 description of what goes into those sections.

• Makes the content of documents repeatable.

Process • What happens over time to produce a desired result(s).

• Should answer the five Ws: who, what, where, when,

 and why.

Procedure • How-to or step-by-step information [1]. Example

 procedures are checklists, forms, and step/action tables.

• Implements part of a process.

Documentation Framework

Training Tools

Supported by

Provides the needed

knowledge and skills.

Supports and

automates operations.

Policies Standards

Processes

Procedures

"Laws " or "Principles"

that govern operations.

"What happens over

time" to produce results.

Sections/Descriptions and

"Operational Definitions."

"How-to" or step-by-

step instructions.

Implemented by

Govern/Guide

What actions are performed? 2. Activities

Who performs activities?

When does the activity begin?

 6. Exit criteria

Why is the activity performed? 1. Purpose

Where is activity performed? 8. Process Context (e.g., Hierarchy)

What work products are produced? 4. Output(s)

What work products are used? 3. Input(s)

When does the activity end?

 5. Entry criteria

How is the activity implemented? 9. Sub-Activity or Procedure

 7. Roles

Action

Table 3: Order Example Procedure

Note: Slide adapted from "A Software Process Famework for the SEI Capability Maturiy Model." Olson, et al. CMU/SEI-94-HB-01

Key Process Question Process Element

Note: Adapted from "A Software Process Framework for the SEI Capability Maturity Model," Olson, et al. CMU/SEI-94-HB-01

Step

Log the defects of the Defect Form. Continue logging defects

until the work product is completely inspected using the checklist.

End tracking time (e.g., write down the end time). Calculate the

total time spent looking for and logging defects, and record the

total time on the Defect Form.

Begin to track time (e.g., write down the start time).1

Look for defects in the selected work product by using the

appropriate data-driven checklist.
2

3

4

Figure 1: Types of Process Documents and Their Relationships

26 CROSSTALK The Journal of Defense Software Engineering June 2006

sentations of activities that need to be
completed to declare something complet-
ed. What makes checklists so powerful is
that it usually does not matter in what
order the checklist is completed. This is
why checklists are useful for concurrent
activities (e.g., versus flowcharts that are
poor at representing concurrency).

Forms
Forms, along with instructions for com-
pleting the forms, are repeatable mecha-
nisms for supporting processes. Forms are
powerful mechanisms for collecting data
in a repeatable way.

Step/Action Tables
One effective way to represent a proce-
dure is using a step/action table [1].
Step/action tables are useful when order
matters. For example, if a person needs to
track his or her time, then starting to track
time should not be the last step. For an
example procedure of when order mat-
ters, see Table 5.

Some Success Stories
The best practices discussed in this article
have been successfully used in practice
over the last decade. More recently, major
breakthroughs in defining extremely short
and concise processes have also been
achieved. An example of a short sub-
process can be found in Figure 2 and
Table 3. The following are some success
story summaries (without revealing orga-
nizational identities).

Organizational Example 1
Organization No. 1 had a process that was
not followed very well, and the process
user feedback was that users did not like
the process. The process had the follow-
ing weaknesses (which are typical to most
organizations):
• Mixture of document types: policies,

standards, processes, and procedures.
• The existing processes lacked pictures

(i.e., mostly text).
• The principle of chunking was violated

in the flowcharts and in the number of
process and procedure steps (e.g.,
processes and procedures with more
than 20 steps), making the processes
and procedures hard to use.

• Processes did not address all the five
W’s (e.g., when was missing; some other
W’s were also weak). It is hard to fol-
low a process if you do not know
when to start or when you are done.

• Procedures were very large and hard to
follow (e.g., typical of International
Organization of Standardization [ISO]

Software Engineering Technology

Figure 2: 7.1 Develop Project Configuration Management Plan (Expert Mode)

Purpose: To Define a Complete Project Configuration Management (CM) Plan

 txetnoC ssecorP

 airetirC yrtnE/stupnI

Project Initiated

Project Planning Started

 Outputs/Exit Criteria

 Project CM Plan matches CM standard in Figure 1.

 Project CM Plan is reviewed and approved.

 CCB and CM Lead are identified.

 CM System is set up according to the set-up CM System Procedure.

7.1.2 Develop Project CM Plan

CM Lead

Start

QA

7.1.1 Assign

Project CM Plan

to CM Lead

7.1.5

Approve?

Yes

No

End

7.1.3 Review Project CM Plan

7.1.6 Approve Project CM

Plan

7.1.4 Set-Up Project CM System

Project

Manager

7.1.1

7.1.2

7.1.3

�

�

7.1.4

7.1.5

7.1.6

Assign Project CM Plan to CM Lead

At the appropriate time in the project (typically during project planning), the PM assigns the Project's

CM plan development to the CM lead.

GUIDANCE:

A CM lead should have experience in setting up CM systems and performing CM. The CM Lead should

also have been trained in CM.

Develop Project CM Plan

The CM lead develops the Project CM plan according to the sections in the CM Plan Standard. It is required

to follow the exact format of the CM Plan Standard

GUIDANCE:

The CM Plan Standard and example completed Project CM plans can be found on the Organizational

Process Asset Web site.

Review Project CM Plan

The PM, CM Lead, and QA are required to peer review the CM Plan according to the CM Plan checklist in

Appendix C. QA should review the CM plan against the CM Plan Standard.

It is recommended to include the Project Team in the review.

GUIDANCE:

Set Up Project CM System

The CM Lead sets up the CM system for the project according to the Set-Up CM System Procedure in

Appendix D. This step should be performed concurrently with steps 7.1.5 and 7.1.6.

This task is only done once and may already be completed for maintenance projects.

GUIDANCE:

Approve?

If "YES," then proceed to Process Step 7.1.6.

If "NO," then procedd back to Process Step 7.1.2 for rework.

After the third "No" iteration or 2 weeks after the first disapproval, escalate a CM Plan disapproval issue to

Project Management.

QA should ensure the CM Project Planning Process is followed. QA also needs to work with the Project

Manager regarding approval issues.

GUIDANCE:

GUIDANCE:

Approve Project CM Plan

QA approves the Project CM Plan and places the plan on the project's official Web site.

This sub-process is not complete until all steps have been completed (e.g., 7.1.4).

QA should ensure the Project CM Plan is integrated into the overall Project Plan. The Project CM Plan

is placed under CM with the Project Plan in the Project Planning Process.

Process StepStep Role

PM

CM

Lead

All

Active

Roles

CM

Lead

QA

QA

Table 3: 7.1 Develop Project Configuration Management Plan (Intermediate Mode)

Note: Project Manager (PM), Configuration Management (CM), Quality Assurance (QA).

Defining Short and Usable Processes

June 2006 www.stsc.hill.af.mil 27

procedures).
New processes and procedures imple-
mented the best practices described in this
article and addressed all these weaknesses
above. Process modeling was used to add
good diagrams and address chunking of
the flow chart. The new processes
addressed all the five W’s and were defined
on one page for expert mode (Please see
Figure 2 for an example of the five W’s).
In conclusion, organization No. 1 was
much happier with diagrams on one page
(i.e., process models), and with short,
usable processes and procedures.

Organizational Example 2
In organization No. 2, although detailed
procedures existed, the overall processes
had not been documented. Four sub-
processes were defined on one-page dia-
grams (i.e., process models) for each
process in expert mode (the five W’s on
one page), and a page of text along with
guidance was developed in intermediate
mode to support the diagram (see Figure
2 and Table 3 for a similar example). This
organization packaged these four short
processes in a single process guide in
intermediate mode in about 20 pages total
– four pages per process (similar process-
es documents can be more than 100
pages).

The experienced manager of this
newly defined process was promoted in
organization No. 2. Sometimes experi-
enced people get stuck in positions
because they are the only ones who know
the processes, and often the processes are
not documented. The new process docu-
ment also helped with the transition
because it allowed a new manager to come
in and quickly learn the documented
processes.

Organizational Example 3
Organization No. 3 requested a process
review of all its processes that identified
strengths, weaknesses, and made specific
recommendations to senior management.
During the organizational process review,
it was discovered that a key process was
not documented. The process was
designed into three sub-processes, and
each sub-process was defined on one page
using a diagram (i.e., expert mode), and a
page of text (along with guidance) was
developed in intermediate mode to sup-
port the diagram (see Figure 2 and Table 3
for a similar sub-process example). The
entire new process guide (including the
policy, standard, process, and procedures)
is about 20 pages long total (this includes
about a dozen sections, including purpose,

audience, usage, scope, metrics, proce-
dures, references, etc). The new process
also met all ISO requirements, which
added about five pages. In conclusion,
organization No. 3 is much happier and
now has more complete, better, shorter,
and more usable processes and proce-
dures.

Organizational Example 4
Organization No. 4 complained that its
processes and procedures were too large
and difficult to use. After applying the best
practices described in this article, the
processes and procedures were cut in half
(e.g., 600 total pages were reduced to 300
total pages). The processes and proce-
dures are also more usable. What is fasci-
nating about this example is although the
processes and procedures were cut in half,
no information was lost.

Some Lessons Learned
Here are some of the lessons learned
while defining processes with best prac-
tices:
• Do not mix policy, standard, process,

and procedure information (e.g., in the

same paragraph). Label this different
information, and consider how the
information is used.

• Define all process documentation as
simply as possible, but no simpler
(information that is too simple does
not work). Keep process documenta-
tion concise (i.e., short and sweet), but
expect some processes to be complex.

• Use good pictures (most people prefer
pictures). Process modeling is a best
practice and scales up to very complex
systems. Use process modeling to
develop good pictures.

• For each process or sub-process,
define the five W’s on one page using
a diagram (see Figure 2 for an exam-
ple). A good process diagram can
replace 20-25 pages of text.

• Use procedures (i.e., checklists,
forms, and step/action tables [1]) for
implementing processes and for
repeatability.

• Use chunking (i.e., seven plus or minus
two), organize the chunks, and label
the chunks (so users can find infor-
mation quickly). Process modeling
and information mapping [1] help

Table 4: The Practical Process Questions

Documentation Framework

Training Tools

Supported by

Provides the needed

knowledge and skills.

Supports and

automates operations.

Policies Standards

Processes

Procedures

"Laws " or "Principles"

that govern operations.

"What happens over

time" to produce results.

Sections/Descriptions and

"Operational Definitions."

"How-to" or step-by-

step instructions.

Implemented by

Govern/Guide

What actions are performed? 2. Activities

Who performs activities?

When does the activity begin?

 6. Exit criteria

Why is the activity performed? 1. Purpose

Where is activity performed? 8. Process Context (e.g., Hierarchy)

What work products are produced? 4. Output(s)

What work products are used? 3. Input(s)

When does the activity end?

 5. Entry criteria

How is the activity implemented? 9. Sub-Activity or Procedure

 7. Roles

Action

Table 3: Order Example Procedure

Note: Slide adapted from "A Software Process Famework for the SEI Capability Maturiy Model." Olson, et al. CMU/SEI-94-HB-01

Key Process Question Process Element

Note: Adapted from "A Software Process Framework for the SEI Capability Maturity Model," Olson, et al. CMU/SEI-94-HB-01

Step

Log the defects of the Defect Form. Continue logging defects

until the work product is completely inspected using the checklist.

End tracking time (e.g., write down the end time). Calculate the

total time spent looking for and logging defects, and record the

total time on the Defect Form.

Begin to track time (e.g., write down the start time).1

Look for defects in the selected work product by using the

appropriate data-driven checklist.
2

3

4

Documentation Framework

Training Tools

Supported by

Provides the needed

knowledge and skills.

Supports and

automates operations.

Policies Standards

Processes

Procedures

"Laws " or "Principles"

that govern operations.

"What happens over

time" to produce results.

Sections/Descriptions and

"Operational Definitions."

"How-to" or step-by-

step instructions.

Implemented by

Govern/Guide

What actions are performed? 2. Activities

Who performs activities?

When does the activity begin?

 6. Exit criteria

Why is the activity performed? 1. Purpose

Where is activity performed? 8. Process Context (e.g., Hierarchy)

What work products are produced? 4. Output(s)

What work products are used? 3. Input(s)

When does the activity end?

 5. Entry criteria

How is the activity implemented? 9. Sub-Activity or Procedure

 7. Roles

Action

Table 3: Order Example Procedure

Note: Slide adapted from "A Software Process Famework for the SEI Capability Maturiy Model." Olson, et al. CMU/SEI-94-HB-01

Key Process Question Process Element

Note: Adapted from "A Software Process Framework for the SEI Capability Maturity Model," Olson, et al. CMU/SEI-94-HB-01

Step

Log the defects of the Defect Form. Continue logging defects

until the work product is completely inspected using the checklist.

End tracking time (e.g., write down the end time). Calculate the

total time spent looking for and logging defects, and record the

total time on the Defect Form.

Begin to track time (e.g., write down the start time).1

Look for defects in the selected work product by using the

appropriate data-driven checklist.
2

3

4

Table 5: Example: Step/Action Table Procedure

Software Engineering Technology

tremendously with this principle.
• Account for beginner, intermediate,

and expert users of the process.
• Design measurement into the process.

Do not add measurement as an after-
thought.

• The processes must be tailored to each
organization, each business unit or
division, and each project.

Summary
In summary, the objectives of this article
are the following:
1. Describe common problems with

process documentation, including
some human aspects of using process
documents.

2. Discuss some best practices for defin-
ing short and usable processes and
procedures.

3. Describe some success stories in real
organizations.

4. Provide some lessons learned.
Defining short and usable processes

and procedures is challenging. There are
many best practices that can be used to
help improve process documentation. The
approach summarized in this article uses a
collection of best practices, all wrapped
into a process (for defining processes).
The author hopes that the readers have
benefited from the description of some of
the best practices along with the example

process in Figure 2 and Table 3.u

Note
1. Chunking example: Most people can

only remember chunks of information
(e.g., that is why 15-16 digit credit
cards numbers are broken into smaller
chunks [seven, plus or minus two]; a
16-digit Visa number is usually broken
into four groups of four digits).

References
1. Horn, Robert E. Mapping Hypertext:

Analysis, Linkage, and Display Knowl-
edge for the Next generation of On-
Line Text and Graphics. Lexington,
MA: The Lexington Institute, 1989.

2. Olson, Timothy G., et al. “A Software
Process Framework for the SEI
Capability Maturity Model.” CMU/
SEI-94-HB-01. Pittsburgh, PA: Soft-
ware Engineering Institute, 1994.

3. Olson, Timothy G. “Defining
Software Processes in Expert Mode.”
Software Engineering Process Group
Conference, Atlanta, GA, 1998.

4. Ross, Douglas T., and Kenneth E.
Schoman Jr. “Structured Analysis for
Requirements Definition.” IEEE
Transactions on Software Engineer-
ing SE-3 (1) (1997): 6-15.

28 CROSSTALK The Journal of Defense Software Engineering June 2006

About the Author

Timothy G. Olson is
founder and president of
Quality Improvement
Consultants, Inc. While
performing quality con-
sulting, Olson has helped

organizations measurably improve quality
and productivity, save millions of dollars
in costs of poor quality, and reach higher
Software Engineering Institute maturity
levels. He has been formally trained in
Crosby, Deming, Juran, International
Organization of Standardization, Capa-
bility Maturity Model® (CMM®), CMM
IntegrationSM, and Six Sigma quality
approaches. He is currently a senior mem-
ber of the American Society of Quality
and a member of the Institute of
Electrical and Electronics Engineers. He
has a master’s degree from the University
of Massachusetts.

Quality Improvement
Consultants, Inc.
7117 Obelisco CIR
San Diego, CA 92009
Phone: (760) 804-1406
Fax: (760) 804-1406
E-mail: tim.olson@qic-inc.com

Earned Schedule
www.earnedschedule.com
Earned Schedule (ES) introduces the concept of adding ES
into a project management repertoire. ES discusses the dif-
ficulty of measuring schedule performance in dollars instead
of units of time. ES is derived from Earned Value
Management (EVM), but explores alternatives to EVM
schedule tracking. It is derived from and is an extension to
EVM. No additional data is needed for acquiring the ES
measures; only the data from EVM is needed. In contrast to
the cost-based indicators from EVM, the ES schedule per-
formance indicators are time-based, making them easier to
comprehend. The ES indicators provide a status and predic-
tive ability for schedule, analogous to the facility for cost
using EVM.

Software Technology Support Center
www.stsc.hill.af.mil
The U.S. Air Force’s Software Technology Support Center
(STSC) provides the Guidelines for Successful Acquisition
and Management of Software Intensive Systems at
<www.stsc.hill.af.mil/resources/tech_docs/gsam4.html>. A
streamlined version of the content is provided and broken
up into chapters for desktop usable access, as well as an

overview of important software acquisition and develop-
ment topics, helpful checklists for rapid self-inspection, and
acquisition and management of software pointers. The
STSC also oversees CrossTalk, offering monthly articles
aimed at the software technology industry.

Software Engineering Institute
www.sei.cmu.edu
Carnegie Mellon University’s Software Engineering Institute
(SEI) has had the national mandate to advance the state of
the practice of software engineering and to serve as a nation-
al resource in software engineering and technology. SEI
aims to help organizations and individuals improve their
software engineering management practices. SEI provides
services dealing with the major categories of software engi-
neering, including management, engineering and acquisi-
tions. The Web site also provides links to education, train-
ing, and frequently asked questions in its mission to support
software engineering professionals and advance software
engineering and related disciplines to ensure the develop-
ment and operation of systems with predictable and
improved cost, schedule, and quality.

WEB SITES

Process improvement programs face a
number of challenges within an

organization. These challenges can
include fickle or uncaring sponsors,
strange behavior, and process envy. Such
dysfunctional behaviors reflect the per-
sonalities and culture of the organiza-
tion. Any organization is a miniature
version of society as a whole. In order to
gain some insight into the effects of dys-
functional behavior in an organization,
let us turn to the best demonstration of
dysfunction in our society, The Jerry
Springer Show. This article will relate
some of the dysfunctional behavior seen
on the Springer show that sabotages rela-
tionships to the resistance and strange
behavior that can sink a process
improvement program.

Sponsors
Many articles and presentations on suc-
cessful improvement programs talk
about the importance of sponsorship.
Involved and active sponsorship is criti-
cal to process improvement efforts. If
the sponsor gets involved, others in the
organization notice and play along.
There are two types of sponsor behav-
iors that can hurt an improvement
effort: cheating and a lack of attention.

The Springer show routinely features
cheating spouses. Invariably, they bring
their new lover on the show and a fight
ensues. Feelings are hurt and the rela-
tionship is never the same. In the
process improvement world, cheating
spouses relate to sponsors that jump
from improvement idea to improvement
idea. Reading too many airline maga-
zines often causes this problem. A spon-
sor will profess his love for Capability
Maturity Model IntegrationSM (CMMI®)-
based process improvement one day,
staff an improvement program, and ask
his managers to join in. Then, while the
sponsor is on a business trip, a new
improvement program catches his eye.
Maybe it is Lean Six Sigma. Maybe it is
the Balanced Scorecard. Suddenly that

CMMI book just does not look the
same. Its cover isn’t as shiny and his
attention wanders. The rest of the orga-
nization will notice this and follow his
lead. This can lead an organization down
a long road of shifting from one
improvement effort to another, and it
does not take long for the organization
to see improvement efforts as shallow
and pointless. It takes the full commit-
ment of the sponsor to win the hearts
and minds of the organization.

Even if sponsors remain committed to
a single improvement program, they can
lose focus. If that happens, subordinate
managers who never really bought into the
improvement program will see an oppor-
tunity to resist changing their behavior.
Organizations that focus on the grade for
a CMMI appraisal are especially suscepti-
ble to this behavior.

Another regular event on the Springer
show involves parents who are suddenly
confronted with the unexpected and wild
behavior of their children. They say things
like, “He’s always been such a good child.”
Then the child comes out dressed as a
vampire or wearing a diaper and brings

out his or her equally bizarre friends. At
one time, these were probably good, atten-
tive parents. However, as the children
grew older and started hanging out with
their friends and pursuing other interests,
the parents felt their job was done and
turned to other interests of their own.

This type of inattentive parenting
equates to sponsors and managers who
rush to put improvements in place to get
the grade. The sponsor pays close atten-
tion while the process is growing up, but
can easily become content once the tar-
get grade level is achieved. The sponsor
may forget that the improvements came
about because of their involvement.
Once the grade is achieved, the sponsor
may turn attention to more pressing
matters with the expectation that things
will not change. Project managers not
committed to continuing improvement
will begin to stop following the process-
es they do not like or do not see as
important. While the sponsor is saying,
“It has always been a good project. It’s
Level 3, you know,” things suddenly start
to change. The project starts to miss
deadlines, and status reports lose their
clarity and validity. Customers start com-
plaining and the sponsor cannot under-
stand what went wrong. Sponsors need
to continue to stress the importance of
good processes and support their
Quality Assurance (QA) group, which
can often be the first source of informa-
tion when a project’s behavior turns
strange. A well-established and support-
ed QA group can be a surrogate parent
to make sure the projects continue to
follow their processes as intended.

Project Managers
Project managers play an integral role in
continuing improvement efforts.
Successful improvements require cas-
cading sponsorship that flows from the
sponsor through the higher levels of
management down to the practitioners.
Unfortunately, many mid-level managers
resist improvement and the changes

Should Your Projects’ Leaders Be on Springer?

Paul Kimmerly
U.S. Marine Corps, Technology Services Organization

This issue of CrossTalk focuses on software projects that fail. Process improvement programs can help a software pro-
gram succeed. They can also help it fail. Process improvement programs have the potential to be dysfunctional for their own rea-
sons. To help put this in perspective, I chose to look at the ringmaster of dysfunction, Jerry Springer. This article draws a par-
allel between the problems faced by process improvement programs to the experiences related on The Jerry Springer Show.

Open Forum

June 2006 www.stsc.hill.af.mil 29

“The sponsor pays
close attention while the
process is growing up,
but can easily become
content once the target
grade level is achieved.
The sponsor may forget
that the improvements
came about because of

their involvement.”

30 CROSSTALK The Journal of Defense Software Engineering June 2006

Open Forum

associated with it.
On the Springer show, many of the

conflicts stem from the refusal of one
person to commit to a long-term rela-
tionship. Promises of marriage never
result in a trip to the altar. Eventually,
one of the people in the relationship
strays. Then, they show up on Springer
with a new love (or two) and a fight
ensues. Managers who resist often say
the right things in the presence of the
sponsor, but never fully commit to mak-
ing improvements. Like the proposal
that never comes, the improvements are
constantly delayed. Some small change
may be made when sponsors are look-
ing, but the managers never commit
when left on their own. If the sponsor
does not press the issue, the desired
change will not happen.

Cross-dressers often make appear-
ances on the Springer show. These people
present one face to the public while
behaving very differently behind closed
doors. The Springer show lets them
expose their true selves on national tele-
vision. Projects often behave the same
way. It is not unusual for a project to
develop a lot of process documentation
and store it on their organization’s
repository for all to see. They might
even make a big show of producing the
documentation. The public face looks
the way it should; however, when a clos-
er look is taken, the documentation is all
for show. The project continues to
behave the way it always did without
making the changes that were docu-
mented. This often happens when a pro-
ject tries to write documentation that
matches the way it thinks things should
be done, not the way they are done. Most
organizations have some level of infor-
mal process in place to produce soft-
ware. It may not be written down, but
people know the general way that things
are done. An easy first step in an
improvement program is to document
the current process and then look at
where improvements are needed.
Projects that want to look like they are
doing the right thing often take a differ-
ent approach. They give someone the
task to go off in a corner and write the
documentation without involving the
people performing the work. When that
happens, the documentation looks great.
Unfortunately, no one follows it because
they have no stake in what it says.

Resistance to change is to be expected
in life and in process improvement. Some
resistance is more obvious. When people
resist the changes in their relationship,
chairs fly across the stage at the Springer

show. In organizations, some projects are
just as open in fighting change. Compared
to hidden resistance, this kind of resis-
tance is easier to handle because it is so
obvious. On Springer, Steve and the securi-
ty crew know to rush the stage and get
between the combatants. In an organiza-
tion, the sponsor and the process improve-
ment group need to know where to step in
and take action.

Sometimes, Springer reveals secret
crushes where one guest longs for
another, but fears to come out in the
open. This can actually be a good situa-
tion for an organization. If a sponsor
praises a project with proven, successful
processes, other projects will want simi-
lar attention. They will secretly crave the
sponsor’s attention. Such feelings can be
leveraged to bring improvements to
those projects.

Improvement Groups and
Appraisals
Steve and his security staff sit right at
the edge of the Springer stage ready to
jump in and get in the middle of any
problems that arise. Process improve-
ment groups serve the same role in an
organization. When unexpected conflict
or resistance appears, the process group
is there to step in and work with all the
involved parties to reach a solution.
Sometimes the combatants on Springer
do not want to stop, just like projects
that always resist. Steve and his crew
keep coming back until the guests
behave. Process improvement groups
and sponsors need that same level of
commitment and persistence.

At the end of every show, Jerry sits
off to the side and provides a little
homily. He summarizes what the audi-
ence saw and puts it all into perspective
as much as possible considering what is
usually on the show. Lead appraisers fill
that same role in improvement efforts.
What they see in an organization may be
as ugly as what Jerry deals with every
day, but they are supposed to stay above
it all and put the organization’s behavior
into perspective. That is, of course,
unless the lead appraiser has been work-
ing as a paid consultant with the organi-
zation on its improvement efforts. That
relationship can be a little too close, like
some of the family members that show
up on the Springer show. Such behavior
from consultants may produce mislead-
ing or questionable appraisal results.

Summary
Through it all, Jerry and his security

staff see the problems of society pass in
front of them every day. They see all
manner of people from society’s main-
stream to its fringes. Now, this article is
not intended to encourage process
improvement groups to watch The Jerry
Springer Show for guidance or insight,
even though all of the behaviors listed
here can probably be seen in a one-hour
episode. Watching the show is its own
form of dysfunctional behavior.

In an organization, a process
improvement group is likely to get a
Springer-esque view of behavior from
dealing with all levels of the organiza-
tion. Dysfunctional behavior can come
from the sponsor, the middle managers,
or even the practitioners. Whatever the
source or nature of the behavior, it can
cause a process improvement program
to fail. Failed improvement programs
can have a larger affect on the organiza-
tion as a whole. The Springer show puts
extreme dysfunctional behavior on the
public stage where we can all see its
effects. Improvement groups and
appraisals can do the same for an orga-
nization by showing the dysfunctional
process behavior to the sponsor and
working to address it.u

About the Author

Paul Kimmerly has 17
years experience in soft-
ware development for
the different incarnations
of the U.S. Marine Corps
Technology Services Or-

ganization in Kansas City. A member of
the Software Engineering Process Group
(SEPG) since 1993, Kimmerly has
served as the group’s chair for the past
nine years. Paul is an authorized Standard
CMMI Assessment Method for Process
Improvement Lead Appraiser. He pre-
sented at the 1997 and 2000 Software
Engineering Symposiums and the 2004
National SEPG Conference. Kimmerly
has contributed several articles on
process improvement to CrossTalk
magazine.

DFAS-KC/TKGB
1500 E 95 ST
Kansas City, MO 64197
Phone: (816) 926-5364
DSN 465-5364
Fax: (816) 926-6969
DSN 465-6969
E-mail: paul.j.kimmerly@dfas.mil

BACKTALK

June 2006 www.stsc.hill.af.mil 31

I’m sitting here writing this BackTalk while on business in
Baltimore. I flew into the Baltimore Washington International

Airport (BWI). I remember a few years ago when BWI advertised
itself as a great alternative to both Reagan National (in down-
town D.C., always crowded) and Dulles (which is about 25 miles
out of D.C.). BWI was convenient to both Baltimore and D.C.,
and small enough that rental cars were located within a five
minute walk of the terminal. Things have changed! BWI is now
under construction, and I had to walk from one end of the air-
port to the other to get to baggage claim. Then, I had to walk all
the way to the other end of the airport to catch the “rental car
bus.” Car rentals are now about five miles away, so you have no
option other than the inconveniently located rental car bus – and
the buses were extremely crowded. Things change. What used to
be a good thing becomes inconvenient and appears to be poorly
designed.

Which brings us to “Why Software Fails.” This has been a
hard column to write – I was tempted to take the easy way out,
and simply list and add the pictures of a few former co-workers
and acquaintances who, in my opinion, have contributed to fail-
ing software over the years.1 But instead, I have come up with a
good start at a list that explains why software fails.

Software fails … one day at a time. Insidious little events
occur. Small errors creep in. You have the road not taken syn-
drome. You realize that you could do better, but you don’t have
time to go back and start all over again. It’s not always the big
errors that cause failure, it’s the little errors that accumulate.

Software fails … with the best of intentions. Developers,
with the exception of a few TRULY unspectacular folks I have
known, don’t really set out to do a poor job.2 We try and make the
right choices, but we don’t have the ability to predict the future.
If things had turned out a little differently, we would have had a
spectacular success. Instead, decisions turned out to be sub-opti-
mal. If we only had the time to do it over.

Software fails … because we have no other choice.
Sometimes politics, budgets, and schedules force us to make deci-
sions we don’t like. In a perfect world, we would have the time
and budget to make perfect software. The world isn’t perfect, and
we are often forced into less than perfect solutions. We know bet-
ter, we just can’t do better. Real-world requirements change and
we have to make the software react also, or the software becomes
obsolete. I am relatively sure that the designers of the new BWI
rental car terminal wish they were still located within a few hun-
dred feet of the airport. However, the reality is that increased air
traffic and congestion made this option infeasible. Sad to see it
go, but it beats NOT having a rental car, doesn’t it?

Software fails ... because we are overcome by events.
Sometimes, we have to make choices before we have time to
research all of the options. Schedules are tight and it’s more
important to make a workable decision now rather than making
a better decision later. We don’t like it, but it’s just what we have
to do.

Software fails … because we can’t think of everything. Ever
left the house for the grocery store with a memorized grocery list?
You started out for milk and eggs. You added carrots and sliced
cheese. Your spouse reminded you that you need toothpaste and
shampoo. Only a few items. Yet, by the time you get to the gro-

cery store, you’re reduced to calling home, because all you can
remember is milk, eggs, and something else. How many things can
you juggle in your memory at one time? For most people, I sus-
pect this number peaks out around nine or 10. Unfortunately,
large-scale software has millions of lines of code, and literally
tens of thousands of function points. How can we comprehend
such large scale? We use architectural design to decompose the
problem, and we use high-level languages, modularity, and object-
oriented techniques to further break the problem down.
However, with software of such large size, things just slip
through the cracks. Requirements are missed or not implement-
ed. Obvious errors are usually obvious only in hindsight – after
the failure.

Software fails … because developers are only human. Have
you ever spent hours (or even days) looking for an error, and had
somebody wander by, glance over your code, and immediately see
the problem? When you develop code, you tend to internalize
your own errors, and then your brain fails to see them. An out-
side observer, however, can often see what you keep overlooking.
Almost all good developers know that you need somebody else
to review your work. This applies to all phases of software devel-
opment: requirements, design, coding, and maintenance. One of
my favorite quotes is, “When quality is vital, independent checks
are necessary, not because people are untrustworthy but because
they are human3.” Even if you are one of the best software devel-
opers around,4 you make mistakes. So does everybody else.

Software fails … because you failed to consult the Software
Technology Support Center (STSC) for help when developing
your software. Or, if not the STSC, you should learn from some-
body! You want to emulate the best practices of others while at
the same time keep from making the same mistakes that others
have made. Learn from the mistakes of others and also learn
from the success of others. Find out what other similar develop-
ment efforts did right and wrong. Read journals. Talk to fellow
developers on other projects. But then – you are already reading
CrossTalk, aren’t you?

— David A. Cook, Ph.D.
The AEgis Technologies Group, Inc.

dcook@aegistg.com

P.S. I am not claiming my list is complete or even valid (after all,
I didn’t review this with anybody else!). Feel free to e-mail me
your additions or comments, and maybe you’ll see them in a
future BackTalk column.

Notes
1. Worried that you’ll find your name here, aren’t you?
2. STILL worried that you’ll find your name here, aren’t you?
3. Humphrey, Watts S. Managing the Software Process.

Addison-Wesley, 1989.
4. Well, you certainly aren’t expecting to find any name other

than mine, are you?

When Failure IS an Option …

CrossTalk/517 SMXS/MDEA
6022 Fir AVE

BLDG 1238

Hill AFB, UT 84056-5820

PRSRT STD

U.S. POSTAGE PAID

Albuquerque, NM

Permit 737

CrossTalk is

co-sponsored by the

following organizations:

	Front Cover
	Table of Contents
	From the Sponsor
	Why Projects Fail
	Social and Technical Reasons for Software Project Failures
	What We’ve Got Here Is … Failure to Communicate
	Knowledge:The Core Problem of Project Failure

	Software Engineering Technology
	Start With “Simple” Earned ValueOn All Your Projects
	Statistical Methods Applied to EVM: The Next Frontier
	Defining Short and Usable Processes

	Open Forum
	Should Your Projects’ Leaders Be on Springer?

	Coming Events
	Call for Articles
	Web Sites
	BackTalk
	Back Cover

